PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1205–m1206.
Published online 2009 September 12. doi:  10.1107/S1600536809034655
PMCID: PMC2970285

Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4-olato)bis­(dimethyl sulfoxide)nickel(II)

Abstract

In the title compound, [Ni(C8H7O4)2{(CH3)2SO}2], the NiII atom is located on a crystallographic centre of symmetry and has a distorted octa­hedral coordination geometry of type MO6. The bidentate dehydro­acetic acid (DHA) ligands occupy the equatorial plane of the complex in a trans configuration, and the dimethyl sulfoxide (DMSO) ligands are weakly coordinated through their O atoms in the axial positions.

Related literature

3-Acetyl-4-hydr­oxy-6-methyl-2-oxo-2H-pyran (dehydro­acetic acid) (Arndt et al., 1936 [triangle]) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988 [triangle]). It has been shown to possess modest anti­fungal properties, see: Rao et al. (1978 [triangle]). For natural fungicides possessing structures analogous to 5,6-dihydro­dehydroacetic acid, see: Bartels-Keith (1960 [triangle]); Miyakado et al. (1982 [triangle]); Ayer et al. (1988 [triangle]). The complexes of DHA with copper and with several other transition metal cations are fungistatic, see: Rao et al. (1978 [triangle]). For the nickel–DHA complex, see: Casabò et al. (1987 [triangle]). The configuration of the complex mol­ecule is similar to that found in [Zn(DHA)2·2(DMSO) and Cd(DHA)2·2(DMSO)] (Zucolotto Chalaça et al., 2002 [triangle]), [Cu(DHA)2·2(DMSO)] (Djedouani et al., 2006 [triangle]) and bis­(4,6-dibromo-2-formyl­phenolato-κ2 O,O′)-bis­(dimethyl sulfoxide)nickel(II) (Zhang et al., 2007 [triangle]). For Ni—ODMSO distances in similar structures, see: Ma et al. (2003 [triangle]); Tahir et al. (2007 [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1205-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H7O4)2(C2H6OS)2]
  • M r = 549.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1205-efi1.jpg
  • a = 11.3850 (10) Å
  • b = 6.2833 (4) Å
  • c = 19.7434 (15) Å
  • β = 123.525 (6)°
  • V = 1177.40 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.05 mm−1
  • T = 100 K
  • 0.25 × 0.15 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.902, T max = 0.902
  • 14084 measured reflections
  • 2628 independent reflections
  • 1962 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.098
  • S = 1.11
  • 2628 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.97 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1998 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PARST (Nardelli, 1995 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034655/hg2559sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034655/hg2559Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Université Farhet Abbas de Sétif, Sétif, Algeria.

supplementary crystallographic information

Comment

3-Acetyl-4-hydroxy-6-methyl-2-oxo-2H-pyran (dehydroacetic acid) (Arndt et al., 1936) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Tan & Ang, 1988). It has been shown to possess modest antifungal properties (Rao et al., 1978). The importance of similar pyrones as potential fungicides is reinforced by the existence of several natural fungicides possessing structures analogous to 5,6-dihydrodehydroacetic acid, such as alternaric acid (Bartels-Keith, 1960), the podoblastins (Miyakado et al., 1982) and lachnelluloic acid (Ayer et al., 1988). Also, it has been shown that the complexes of DHA with copper and with several other transition metal cations are fungistatic (Rao et al., 1978). This has motivated our study of the structural characterization of complexes of dehydroacetic acid. The complex of DHA with nickel was previously reported by Casabò et al. (1987), but their characterization of the compound was based only on thermal and elemental analysis, and on IR and NMR spectroscopy.

We present here the crystal structure determination of the title complex, [Ni(DHA)2.2(DMSO)], (I) (DMSO = dimethylsulfoxide). The nature of the title compound, (I), was established by an X-ray structure determination and is shown in Fig. 1

The Ni atom lies on a crystallographic centre of symmetry with the ligands bonded to nickel in an all-trans fashion. The configuration of the complex molecule is similar to that found in [Zn(DHA)2. 2(DMSO); Cd(DHA)2.2(DMSO)] (Zucolotto Chalaça et al., 2002), [Cu(DHA)2. 2(DMSO)] (Djedouani et al., 2006), with (DHA: dehydroacetic acid) and Bis(4,6-dibromo-2-formylphenolato-κ2O,O')-bis(dimethyl sulfoxide)nickel(II), [Ni(C7H3Br2O2)2(C2H6OS)2] (Zhang et al., 2007).

The coordination polyhedron around the Ni atom is a slightly distorted octahedron (Table 1), with the O atoms of the DMSO groups in axial positions; and the Ni—ODMSO distance is in agreement with literature values: [2.1139 (12) Å - 1.9897 (13) Å (Tahir et al., 2007), 1.998 (3) Å - 2.105 (3) Å (Zhang et al. 2007), 2.030 (2) Å- 2.057 (2)Å (Ma et al., 2003)].

The orientation of the DMSO molecule can be described by the torsion angles O3—Ni—O1—S [43.32 (4) °] and O2—Ni—O1—S [-137.70 (4) °]. The packing of (I) is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 2) which form a three-dimensional network (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of dehydroacetic acid with nickel (II) chloride hexahydrate in the presence of sodium acetate (Casabò et al. 1987). Crystals of (I) were grown by slow evaporation of a dimethylsulfoxide solution..

Refinement

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds.

Figures

Fig. 1.
The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of (I); Hydrogen atoms have been omitted for clarity.

Crystal data

[Ni(C8H7O4)2(C2H6OS)2]F(000) = 572
Mr = 549.24Dx = 1.549 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2190 reflections
a = 11.385 (1) Åθ = 2.8–27.3°
b = 6.2833 (4) ŵ = 1.05 mm1
c = 19.7434 (15) ÅT = 100 K
β = 123.525 (6)°Plates, colourless
V = 1177.40 (16) Å30.25 × 0.15 × 0.1 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer2628 independent reflections
Radiation source: fine-focus sealed X-ray tube1962 reflections with I > 2σ(I)
graphiteRint = 0.071
[var phi] scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −14→14
Tmin = 0.902, Tmax = 0.902k = −8→7
14084 measured reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098w = 1/[σ2(Fo2 + 0.3428P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2628 reflectionsΔρmax = 0.55 e Å3
156 parametersΔρmin = −0.97 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0084 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50.50.50.02521 (16)
S10.75777 (6)0.76611 (10)0.53190 (4)0.03283 (19)
O50.22643 (18)0.1935 (3)0.18093 (9)0.0384 (4)
O10.62169 (17)0.6626 (3)0.46467 (10)0.0387 (4)
O20.47029 (16)0.2626 (3)0.42577 (9)0.0307 (4)
O30.32165 (16)0.6292 (3)0.40600 (9)0.0316 (4)
O40.1020 (2)0.4798 (3)0.15900 (11)0.0478 (5)
C60.2779 (2)0.4022 (4)0.29848 (13)0.0252 (5)
C30.1192 (3)0.7190 (4)0.28219 (15)0.0378 (6)
H3A0.11010.81330.31730.057*
H3B0.03680.6310.25270.057*
H3C0.12910.8010.24460.057*
C100.3256 (3)0.0457 (4)0.23083 (15)0.0317 (6)
C80.3859 (2)0.2500 (4)0.34964 (14)0.0253 (5)
C90.3994 (2)0.0651 (4)0.31075 (14)0.0296 (5)
H90.4616−0.04260.34280.036*
C50.2474 (2)0.5807 (4)0.33237 (13)0.0265 (5)
C20.7743 (3)1.0036 (4)0.48915 (18)0.0469 (7)
H2A0.76260.97180.43820.07*
H2B0.86591.06420.52560.07*
H2C0.70341.10330.48050.07*
C70.1958 (2)0.3697 (4)0.21184 (14)0.0312 (6)
C40.3357 (3)−0.1273 (5)0.18287 (17)0.0470 (7)
H4A0.4053−0.22890.21910.071*
H4B0.3623−0.06790.14840.071*
H4C0.246−0.19660.15010.071*
C10.8954 (3)0.6199 (5)0.53594 (19)0.0526 (8)
H1A0.89720.47760.55420.079*
H1B0.98410.68790.5730.079*
H1C0.87920.61540.48280.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0190 (2)0.0297 (3)0.0197 (2)0.00047 (17)0.00610 (17)−0.00322 (16)
S10.0280 (3)0.0421 (4)0.0247 (3)−0.0061 (3)0.0122 (3)−0.0037 (3)
O50.0403 (10)0.0450 (11)0.0241 (9)0.0070 (8)0.0141 (8)−0.0024 (7)
O10.0292 (9)0.0534 (11)0.0275 (9)−0.0120 (8)0.0119 (8)−0.0051 (8)
O20.0245 (8)0.0336 (9)0.0212 (8)0.0057 (7)0.0046 (7)−0.0021 (7)
O30.0257 (8)0.0336 (10)0.0260 (9)0.0043 (7)0.0083 (7)−0.0040 (7)
O40.0461 (12)0.0539 (12)0.0237 (9)0.0148 (10)0.0068 (8)0.0052 (8)
C60.0210 (11)0.0284 (13)0.0226 (11)−0.0001 (10)0.0099 (9)0.0003 (9)
C30.0292 (13)0.0375 (15)0.0335 (13)0.0092 (11)0.0090 (11)−0.0011 (11)
C100.0273 (13)0.0352 (14)0.0342 (13)−0.0012 (11)0.0179 (11)−0.0038 (10)
C80.0209 (11)0.0285 (12)0.0255 (11)−0.0034 (10)0.0122 (9)−0.0008 (9)
C90.0225 (12)0.0309 (13)0.0286 (13)0.0003 (10)0.0098 (10)−0.0023 (10)
C50.0202 (11)0.0286 (13)0.0266 (12)−0.0018 (10)0.0104 (10)0.0025 (9)
C20.0358 (15)0.0372 (16)0.0524 (17)0.0002 (12)0.0148 (13)0.0047 (12)
C70.0292 (13)0.0347 (14)0.0264 (12)0.0010 (11)0.0132 (10)0.0013 (10)
C40.0510 (17)0.0524 (18)0.0395 (15)0.0046 (15)0.0262 (14)−0.0127 (13)
C10.0350 (15)0.0460 (18)0.0587 (19)0.0043 (14)0.0144 (14)−0.0056 (14)

Geometric parameters (Å, °)

Ni1—O2i1.9849 (16)C3—C51.507 (3)
Ni1—O21.9849 (16)C3—H3A0.96
Ni1—O32.0159 (15)C3—H3B0.96
Ni1—O3i2.0159 (15)C3—H3C0.96
Ni1—O1i2.1255 (18)C10—C91.321 (3)
Ni1—O12.1255 (18)C10—C41.487 (4)
S1—O11.5211 (17)C8—C91.447 (3)
S1—C21.775 (3)C9—H90.93
S1—C11.780 (3)C2—H2A0.96
O5—C101.371 (3)C2—H2B0.96
O5—C71.398 (3)C2—H2C0.96
O2—C81.262 (3)C4—H4A0.96
O3—C51.250 (3)C4—H4B0.96
O4—C71.215 (3)C4—H4C0.96
C6—C81.440 (3)C1—H1A0.96
C6—C71.441 (3)C1—H1B0.96
C6—C51.443 (3)C1—H1C0.96
O2i—Ni1—O2180C9—C10—C4127.3 (2)
O2i—Ni1—O392.94 (6)O5—C10—C4111.1 (2)
O2—Ni1—O387.06 (6)O2—C8—C6125.9 (2)
O2i—Ni1—O3i87.06 (6)O2—C8—C9116.6 (2)
O2—Ni1—O3i92.94 (6)C6—C8—C9117.4 (2)
O3—Ni1—O3i180.0000 (10)C10—C9—C8121.6 (2)
O2i—Ni1—O1i89.72 (7)C10—C9—H9119.2
O2—Ni1—O1i90.28 (7)C8—C9—H9119.2
O3—Ni1—O1i89.31 (7)O3—C5—C6123.2 (2)
O3i—Ni1—O1i90.69 (7)O3—C5—C3114.3 (2)
O2i—Ni1—O190.28 (7)C6—C5—C3122.51 (19)
O2—Ni1—O189.72 (7)S1—C2—H2A109.5
O3—Ni1—O190.69 (7)S1—C2—H2B109.5
O3i—Ni1—O189.31 (7)H2A—C2—H2B109.5
O1i—Ni1—O1180S1—C2—H2C109.5
O1—S1—C2105.60 (12)H2A—C2—H2C109.5
O1—S1—C1105.41 (12)H2B—C2—H2C109.5
C2—S1—C197.65 (15)O4—C7—O5112.9 (2)
C10—O5—C7121.85 (18)O4—C7—C6128.7 (2)
S1—O1—Ni1116.97 (9)O5—C7—C6118.4 (2)
C8—O2—Ni1129.32 (15)C10—C4—H4A109.5
C5—O3—Ni1131.49 (15)C10—C4—H4B109.5
C8—C6—C7118.8 (2)H4A—C4—H4B109.5
C8—C6—C5121.45 (19)C10—C4—H4C109.5
C7—C6—C5119.74 (19)H4A—C4—H4C109.5
C5—C3—H3A109.5H4B—C4—H4C109.5
C5—C3—H3B109.5S1—C1—H1A109.5
H3A—C3—H3B109.5S1—C1—H1B109.5
C5—C3—H3C109.5H1A—C1—H1B109.5
H3A—C3—H3C109.5S1—C1—H1C109.5
H3B—C3—H3C109.5H1A—C1—H1C109.5
C9—C10—O5121.6 (2)H1B—C1—H1C109.5

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1B···O4ii0.962.553.384 (4)145
C2—H2B···O4ii0.962.533.370 (4)146
C2—H2C···O2iii0.962.463.378 (4)160

Symmetry codes: (ii) x+1, −y+3/2, z+1/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2559).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Arndt, F., Eistert, B., Scholz, H. & Aron, E. (1936). Chem. Berichte Teil B, 69, 2373–2380.
  • Ayer, W. A., Figueroa-Villar, J. D. & Migaj, B. (1988). Can. J. Chem.66, 506–521.
  • Bartels-Keith, J. R. (1960). J. Chem. Soc. pp. 1662–1665.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Casabò, J., Marquet, J., Moreno-Manas, M., Prior, M. & Teixidor, F. (1987). Polyhedron, 6, 1235–1238.
  • Djedouani, A., Bendaâs, A., Bouacida, S., Beghidja, A. & Douadi, T. (2006). Acta Cryst. E62, m133–m135.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m483–m484.
  • Mabay, T. (1982). J. Chem. Lett. pp. 1539–1542.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Miyakado, M., Inoue, S., Tanabe, Y., Watanabe, K., Ohno, N., Yoshioka, H. & Mabay, T. (1982). J. Chem. Lett. pp. 1539–1542.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Nonius (2002). COLLECT and EVAL Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rao, D. S., Ganorkar, M. C., Rao, B. L. S. & John, V. T. (1978). Natl Acad. Sci. Lett.1, 402–404.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tahir, A. A., Hamid, M., Zeller, M., Mazhar, M. & Hunter, A. D. (2007). Acta Cryst. E63, m272–m274.
  • Tan, S. F. & Ang, K. P. (1988). Transition Met. Chem.13, 64–68.
  • Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.
  • Zucolotto Chalaça, M., Figueroa-Villar, J. D., Ellena, J. A. & Castellano, E. E. (2002). Inorg. Chim. Acta, 328, 45–52.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography