PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2470–o2471.
Published online 2009 September 16. doi:  10.1107/S1600536809036277
PMCID: PMC2970284

(E)-2,4,7-Trichloro-3-hydr­oxy-8-meth­oxy-1,9-dimethyl-6-(1-methyl-1-propen­yl)-11H-dibenzo[b,e][1,4]dioxepin-11-one monohydrate (nidulin monohydrate)

Abstract

In the title compound, C20H17Cl3O5·H2O, the nidulin mol­ecule consists of three rings, the folded central dioxepin-11-one ring being fused on both sides to phenyl rings. The mol­ecular structure is stabilized by intra­molecular O—H(...)Cl and C—H(...)Cl hydrogen bonds that generate S(6) ring motifs. The crystal structure is stabilized by inter­molecular O—H(...)O and O—H(...)(O,O) hydrogen bonds mediated by two inversion-related water mol­ecules, generating R 4 2(8) ring and C 2 2(4) chain motifs. Weak inter­molecular Cl(...)O halogen bonds are also present with Cl(...)O distances of 3.071 (1) and 3.182 (2) Å.

Related literature

For the structure and synthesis of nidulin, see: Beach & Richards (1961 [triangle], 1963 [triangle]); Bycroft & Roberts (1963 [triangle]). For the crystal structure of anhydrous nidulin, see: McMillan (1964 [triangle]). For related structures, see: Brassy et al. (1977 [triangle]); Connolly et al. (1984 [triangle]); Kawahara et al. (1988 [triangle]); Blaser & Stoeckli-Evans (1991 [triangle]); Xu et al. (2000 [triangle]); Lang et al. (2007 [triangle]). For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2470-scheme1.jpg

Experimental

Crystal data

  • C20H17Cl3O5·H2O
  • M r = 461.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2470-efi3.jpg
  • a = 7.7706 (4) Å
  • b = 11.0374 (5) Å
  • c = 23.9428 (10) Å
  • β = 96.707 (2)°
  • V = 2039.45 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 298 K
  • 0.44 × 0.28 × 0.26 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.817, T max = 0.846
  • 11735 measured reflections
  • 5969 independent reflections
  • 4193 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.118
  • S = 1.02
  • 5969 reflections
  • 276 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al. 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036277/sj2646sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036277/sj2646Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Department of Chemistry and the Faculty of Science of Chulalongkorn University (grant No. RES A1B1–10) to TA and by the Thailand Research Fund (TRF) to PK.

supplementary crystallographic information

Comment

The title compound, (I), (E)-2,4,7-trichloro-3-hydroxy-8-methoxy- 1,9-dimethyl-6-(1-methyl-1-propenyl)-11H-dibenzo[b,e] [1,4]dioxepin-11-one (nidulin) monohydrate, C20H17Cl3O5.H2O (Fig. 1), is a fungal metabolite that was isolated from an identified marine sponge. The structure of the first anhydrous monoclinic crystal form of nidulin was determined and reported without atomic coordinates by McMillan (1964). Here we report a second monoclinic monohydrate crystal form; a water molecule of hydration acts as the centre of hydrogen bonding network stabilizing the entire crystal.

Because the atomic coordinates of the anhydrous form is not available, the two crystal forms of nidulin cannot be structurally compared. The molecular structures of (I) comprises three rings; the central dioxepin-11-one ring in a boat conformation is fused on both sides to the two fully substituted phenyl rings with an interplanar angle of 120.39 (7)°. The substituent atoms all lie close to the planes of the two phenyl rings. Exceptions are atoms C14, C17, Cl2 and Cl3 which deviate from the mean planes, by ≈ -0.11 Å. The methoxy C16 atom deviates from the C7···C12 mean plane by 1.229 (4) Å and the C8—C9—O5—C16 torsion angle is 105.26 (23)°. The plane of the 1-methyl-1-propenyl group defined by atoms C17, C18, C19 and C20 makes an angle of 40.23 (6)° with respect to the attached phenyl ring. For the central dioxepin-11-one ring, atoms O1, O2, O3 and C13 are displaced by 1.188 (4), 0.859 (3), 0.584 (2) and 0.669 (3) Å, respectively, from the mean plane through atoms C1, C2, C7 and C12.

The nidulin molecule is stabilized by intramolecular O4—H···Cl2 and C16—H···Cl3 hydrogen bonds each of which generates an S(6) ring motif. (Bernstein et al., 1995) and is linked to the water molecule by an intermolecular O1W—H···O5 hydrogen bond (Fig. 1). The crystal lattice of nidulin is sustained by O—H···O intermolecular hydrogen bonds mediated by two inversion-related water molecules which generate an R42(8) ring motif, (Fig. 2). C22(4) chains (Bernstein et al., 1995) are also formed. The structure is further stabilized by weak intermolecular Cl2···O1W and Cl3···O3 halogen bonds.

Experimental

The title compound, (I), was extracted from the marine-derived fungus Aspergillus sp. CRI282–03 and single crystals of (I) were obtained from slow evaporation of an acetone-ethylacetate-hexane (1:1:1, v/v) solution at room temperature. It was found later that nidulin contained a water molecule of hydration in the crystal lattice. Water molecules found as traces in the organic solvents, are retained in the sample by strong hydrogen bonding to the nidulin molecules.

Refinement

The water H-atoms were located in a difference electron density map and refined isotropically. All other H atoms were located and then refined using a riding model: C—H = 0.93 Å (methine), Uiso(H) = 1.2Ueq(C) and C—H = 0.96 Å (methyl), O—H = 0.82 Å (hydroxyl), Uiso(H) = 1.5Ueq(C/O).

Figures

Fig. 1.
The structure of (I) with atom numbering and 50% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
Fig. 2.
: O—H···O hydrogen bonds generating an R42(8) ring motif from inversion-related nidulin and water molecules. Hydrogen bonds are shown as dashed lines.
Fig. 3.
: C22(4) chains generated from the two inversion-related nidulin-monohydrate molecules through O—H···O hydrogen bonds. Intermolecular Cl···O halogen bonds are also shown. Hydrogen bonds and Cl···O ...

Crystal data

C20H17Cl3O5·H2OF(000) = 952
Mr = 461.70Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4256 reflections
a = 7.7706 (4) Åθ = 2.6–30.1°
b = 11.0374 (5) ŵ = 0.49 mm1
c = 23.9428 (10) ÅT = 298 K
β = 96.707 (2)°Rod, colourless
V = 2039.45 (16) Å30.44 × 0.28 × 0.26 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5969 independent reflections
Radiation source: fine-focus sealed tube4193 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 30.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→8
Tmin = 0.817, Tmax = 0.846k = −8→15
11735 measured reflectionsl = −30→34

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0513P)2 + 0.801P] where P = (Fo2 + 2Fc2)/3
5969 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.19555 (8)1.09399 (5)0.19154 (2)0.04719 (16)
Cl21.27489 (9)1.13429 (5)−0.02688 (2)0.04800 (16)
Cl30.51380 (6)0.74321 (5)0.19233 (2)0.04035 (13)
C11.2062 (2)0.84575 (16)0.07006 (7)0.0260 (3)
C21.1823 (2)0.90311 (15)0.12065 (7)0.0242 (3)
C31.2058 (2)1.02676 (17)0.12732 (8)0.0294 (4)
C41.2405 (2)1.09852 (17)0.08192 (8)0.0318 (4)
C51.2461 (2)1.04181 (17)0.02995 (8)0.0312 (4)
C61.2317 (2)0.91718 (16)0.02277 (8)0.0279 (4)
C71.0090 (2)0.66126 (15)0.12272 (7)0.0254 (3)
C80.8747 (2)0.57758 (16)0.11380 (8)0.0292 (4)
C90.7239 (2)0.60330 (17)0.13765 (8)0.0298 (4)
C100.7088 (2)0.71040 (16)0.16780 (7)0.0269 (4)
C110.8453 (2)0.79319 (15)0.17737 (7)0.0234 (3)
C120.9971 (2)0.76342 (15)0.15515 (7)0.0238 (3)
C131.2414 (2)0.71340 (17)0.06833 (8)0.0291 (4)
C141.2365 (3)0.8636 (2)−0.03500 (8)0.0418 (5)
H1431.17060.9138−0.06240.063*
H1411.18760.7837−0.03610.063*
H1421.35430.8594−0.04320.063*
C150.8942 (3)0.46381 (19)0.08076 (10)0.0446 (5)
H1520.86950.48090.04130.067*
H1510.81470.40360.09130.067*
H1531.01060.43420.08860.067*
C160.5569 (4)0.4478 (2)0.17417 (12)0.0629 (7)
H1620.65880.40050.18520.094*
H1630.46110.39480.16300.094*
H1610.53100.49670.20530.094*
C170.8290 (2)0.91073 (16)0.20689 (8)0.0282 (4)
C180.9100 (4)0.9166 (2)0.26682 (9)0.0496 (6)
H1810.90670.99850.28010.074*
H1831.02820.88990.26910.074*
H1820.84710.86520.28960.074*
C190.7478 (3)1.00046 (18)0.17871 (9)0.0404 (5)
H190.70120.98280.14210.061*
C200.7211 (4)1.1273 (2)0.19822 (13)0.0623 (7)
H2010.76631.13470.23710.093*
H2020.59951.14570.19380.093*
H2030.78031.18290.17620.093*
O11.3465 (2)0.67026 (14)0.04114 (6)0.0449 (4)
O21.16197 (17)0.63383 (11)0.10058 (6)0.0321 (3)
O31.14180 (15)0.83871 (11)0.16655 (5)0.0265 (3)
O41.2591 (3)1.21752 (13)0.09119 (7)0.0519 (4)
H41.29501.24970.06390.078*
O50.58658 (19)0.52480 (13)0.12786 (6)0.0418 (4)
O1W0.3826 (3)0.38791 (17)0.02997 (9)0.0617 (6)
H1W10.465 (5)0.372 (3)0.0093 (15)0.089 (12)*
H2W10.396 (4)0.449 (3)0.0451 (14)0.076 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0688 (4)0.0363 (3)0.0391 (3)−0.0159 (2)0.0170 (3)−0.0148 (2)
Cl20.0726 (4)0.0353 (3)0.0363 (3)−0.0106 (3)0.0073 (3)0.0068 (2)
Cl30.0276 (2)0.0440 (3)0.0510 (3)−0.0006 (2)0.0115 (2)0.0000 (2)
C10.0256 (8)0.0231 (8)0.0295 (9)−0.0007 (6)0.0044 (7)−0.0032 (7)
C20.0215 (8)0.0244 (8)0.0268 (8)−0.0018 (6)0.0036 (6)−0.0019 (6)
C30.0320 (9)0.0270 (9)0.0300 (9)−0.0050 (7)0.0075 (7)−0.0073 (7)
C40.0348 (10)0.0239 (9)0.0374 (10)−0.0070 (7)0.0067 (8)−0.0026 (7)
C50.0324 (10)0.0303 (9)0.0307 (9)−0.0045 (7)0.0032 (8)0.0034 (7)
C60.0287 (9)0.0279 (9)0.0272 (9)−0.0019 (7)0.0029 (7)−0.0027 (7)
C70.0272 (8)0.0207 (8)0.0288 (9)0.0032 (6)0.0057 (7)0.0012 (6)
C80.0366 (10)0.0209 (8)0.0293 (9)−0.0009 (7)0.0008 (7)−0.0009 (7)
C90.0305 (9)0.0259 (9)0.0318 (9)−0.0064 (7)−0.0017 (7)0.0018 (7)
C100.0241 (8)0.0279 (9)0.0288 (9)−0.0004 (7)0.0038 (7)0.0031 (7)
C110.0253 (8)0.0226 (8)0.0225 (8)0.0009 (6)0.0039 (6)0.0010 (6)
C120.0244 (8)0.0210 (8)0.0259 (8)−0.0024 (6)0.0026 (6)0.0014 (6)
C130.0320 (9)0.0258 (9)0.0304 (9)0.0013 (7)0.0079 (7)−0.0029 (7)
C140.0591 (14)0.0368 (11)0.0298 (10)−0.0036 (10)0.0063 (9)−0.0035 (8)
C150.0521 (13)0.0299 (11)0.0529 (13)−0.0047 (9)0.0107 (11)−0.0136 (9)
C160.0649 (17)0.0448 (14)0.0782 (19)−0.0249 (12)0.0053 (14)0.0144 (13)
C170.0316 (9)0.0261 (9)0.0281 (9)−0.0019 (7)0.0095 (7)−0.0044 (7)
C180.0693 (16)0.0460 (13)0.0322 (11)−0.0012 (11)0.0007 (11)−0.0094 (9)
C190.0502 (12)0.0298 (10)0.0430 (12)0.0058 (9)0.0126 (10)−0.0050 (8)
C200.0777 (19)0.0327 (12)0.0809 (19)0.0149 (12)0.0276 (16)−0.0084 (12)
O10.0545 (9)0.0367 (8)0.0484 (9)0.0107 (7)0.0267 (8)−0.0013 (7)
O20.0348 (7)0.0214 (6)0.0423 (8)0.0042 (5)0.0132 (6)−0.0001 (5)
O30.0264 (6)0.0274 (6)0.0260 (6)−0.0053 (5)0.0044 (5)−0.0020 (5)
O40.0855 (13)0.0249 (7)0.0483 (9)−0.0148 (8)0.0211 (9)−0.0054 (6)
O50.0374 (8)0.0385 (8)0.0482 (9)−0.0166 (6)−0.0003 (7)−0.0030 (7)
O1W0.0887 (15)0.0334 (9)0.0700 (13)−0.0188 (9)0.0389 (12)−0.0100 (9)

Geometric parameters (Å, °)

Cl1—C31.7175 (18)C13—O21.364 (2)
Cl2—C51.7361 (19)C14—H1430.9600
Cl3—C101.7261 (18)C14—H1410.9600
C1—C21.398 (2)C14—H1420.9600
C1—C61.412 (2)C15—H1520.9600
C1—C131.488 (2)C15—H1510.9600
C2—O31.376 (2)C15—H1530.9600
C2—C31.384 (2)C16—O51.437 (3)
C3—C41.397 (3)C16—H1620.9600
C4—O41.337 (2)C16—H1630.9600
C4—C51.398 (3)C16—H1610.9600
C5—C61.389 (3)C17—C191.317 (3)
C6—C141.509 (3)C17—C181.499 (3)
C7—C121.378 (2)C18—H1810.9600
C7—O21.390 (2)C18—H1830.9600
C7—C81.391 (3)C18—H1820.9600
C8—C91.391 (3)C19—C201.498 (3)
C8—C151.501 (3)C19—H190.9300
C9—O51.373 (2)C20—H2010.9600
C9—C101.397 (3)C20—H2020.9600
C10—C111.399 (2)C20—H2030.9600
C11—C121.389 (2)O4—H40.8200
C11—C171.490 (2)O1W—H1W10.87 (4)
C12—O31.399 (2)O1W—H2W10.77 (3)
C13—O11.201 (2)
C2—C1—C6119.13 (16)C6—C14—H141109.5
C2—C1—C13120.81 (16)H143—C14—H141109.5
C6—C1—C13118.85 (16)C6—C14—H142109.5
O3—C2—C3117.18 (15)H143—C14—H142109.5
O3—C2—C1121.60 (15)H141—C14—H142109.5
C3—C2—C1121.16 (16)C8—C15—H152109.5
C2—C3—C4120.29 (16)C8—C15—H151109.5
C2—C3—Cl1120.68 (14)H152—C15—H151109.5
C4—C3—Cl1119.03 (14)C8—C15—H153109.5
O4—C4—C3117.05 (17)H152—C15—H153109.5
O4—C4—C5125.00 (17)H151—C15—H153109.5
C3—C4—C5117.89 (16)O5—C16—H162109.5
C6—C5—C4122.89 (17)O5—C16—H163109.5
C6—C5—Cl2120.08 (15)H162—C16—H163109.5
C4—C5—Cl2117.03 (14)O5—C16—H161109.5
C5—C6—C1118.06 (16)H162—C16—H161109.5
C5—C6—C14119.41 (17)H163—C16—H161109.5
C1—C6—C14122.48 (16)C19—C17—C11118.29 (17)
C12—C7—O2120.62 (15)C19—C17—C18125.47 (19)
C12—C7—C8122.10 (16)C11—C17—C18116.24 (17)
O2—C7—C8117.15 (15)C17—C18—H181109.5
C7—C8—C9117.01 (16)C17—C18—H183109.5
C7—C8—C15121.09 (18)H181—C18—H183109.5
C9—C8—C15121.90 (17)C17—C18—H182109.5
O5—C9—C8118.43 (17)H181—C18—H182109.5
O5—C9—C10120.75 (17)H183—C18—H182109.5
C8—C9—C10120.69 (16)C17—C19—C20128.2 (2)
C9—C10—C11121.96 (16)C17—C19—H19115.9
C9—C10—Cl3118.92 (14)C20—C19—H19115.9
C11—C10—Cl3119.10 (14)C19—C20—H201109.5
C12—C11—C10116.40 (15)C19—C20—H202109.5
C12—C11—C17120.72 (15)H201—C20—H202109.5
C10—C11—C17122.79 (15)C19—C20—H203109.5
C7—C12—C11121.66 (16)H201—C20—H203109.5
C7—C12—O3119.40 (15)H202—C20—H203109.5
C11—C12—O3118.93 (15)C13—O2—C7122.63 (14)
O1—C13—O2115.66 (17)C2—O3—C12113.85 (13)
O1—C13—C1122.90 (17)C4—O4—H4109.5
O2—C13—C1121.33 (15)C9—O5—C16115.65 (17)
C6—C14—H143109.5H1W1—O1W—H2W1112 (3)
C6—C1—C2—O3174.18 (15)O5—C9—C10—Cl3−0.4 (2)
C13—C1—C2—O3−18.5 (3)C8—C9—C10—Cl3175.49 (14)
C6—C1—C2—C3−8.7 (3)C9—C10—C11—C120.1 (3)
C13—C1—C2—C3158.65 (17)Cl3—C10—C11—C12−178.12 (13)
O3—C2—C3—C4−177.53 (16)C9—C10—C11—C17176.83 (17)
C1—C2—C3—C45.2 (3)Cl3—C10—C11—C17−1.4 (2)
O3—C2—C3—Cl13.3 (2)O2—C7—C12—C11179.51 (15)
C1—C2—C3—Cl1−173.97 (14)C8—C7—C12—C11−4.8 (3)
C2—C3—C4—O4178.96 (18)O2—C7—C12—O3−1.1 (2)
Cl1—C3—C4—O4−1.9 (3)C8—C7—C12—O3174.52 (16)
C2—C3—C4—C51.6 (3)C10—C11—C12—C73.6 (3)
Cl1—C3—C4—C5−179.24 (15)C17—C11—C12—C7−173.18 (16)
O4—C4—C5—C6177.9 (2)C10—C11—C12—O3−175.78 (15)
C3—C4—C5—C6−5.0 (3)C17—C11—C12—O37.4 (2)
O4—C4—C5—Cl2−1.4 (3)C2—C1—C13—O1−138.3 (2)
C3—C4—C5—Cl2175.76 (15)C6—C1—C13—O129.0 (3)
C4—C5—C6—C11.5 (3)C2—C1—C13—O237.8 (3)
Cl2—C5—C6—C1−179.23 (14)C6—C1—C13—O2−154.90 (17)
C4—C5—C6—C14179.14 (19)C12—C11—C17—C1998.9 (2)
Cl2—C5—C6—C14−1.6 (3)C10—C11—C17—C19−77.7 (2)
C2—C1—C6—C55.2 (3)C12—C11—C17—C18−80.3 (2)
C13—C1—C6—C5−162.32 (17)C10—C11—C17—C18103.1 (2)
C2—C1—C6—C14−172.29 (18)C11—C17—C19—C20−177.4 (2)
C13—C1—C6—C1420.1 (3)C18—C17—C19—C201.7 (4)
C12—C7—C8—C92.1 (3)O1—C13—O2—C7−162.93 (18)
O2—C7—C8—C9177.87 (16)C1—C13—O2—C720.7 (3)
C12—C7—C8—C15−176.85 (18)C12—C7—O2—C13−54.8 (2)
O2—C7—C8—C15−1.0 (3)C8—C7—O2—C13129.38 (18)
C7—C8—C9—O5177.59 (16)C3—C2—O3—C12129.37 (17)
C15—C8—C9—O5−3.5 (3)C1—C2—O3—C12−53.4 (2)
C7—C8—C9—C101.6 (3)C7—C12—O3—C270.77 (19)
C15—C8—C9—C10−179.45 (19)C11—C12—O3—C2−109.84 (17)
O5—C9—C10—C11−178.63 (16)C8—C9—O5—C16105.3 (2)
C8—C9—C10—C11−2.8 (3)C10—C9—O5—C16−78.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O50.77 (3)2.47 (3)3.069 (3)135 (3)
O1W—H1W1···O1i0.87 (4)2.06 (4)2.929 (3)177 (3)
O1W—H2W1···O1ii0.77 (3)2.47 (4)3.143 (2)147 (3)
O4—H4···O1Wiii0.821.892.634 (2)150
O4—H4···Cl20.822.512.9885 (16)119
C16—H161···Cl30.962.743.311 (3)119

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1, y, z; (iii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2646).

References

  • Beach, W. F. & Richards, J. H. (1961). J. Org. Chem.26, 1339–1340.
  • Beach, W. F. & Richards, J. H. (1963). J. Org. Chem.28, 2746–2751.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Blaser, D. & Stoeckli-Evans, H. (1991). Acta Cryst. C47, 2624–2626.
  • Brassy, C., Bodo, B. & Molho, D. (1977). Acta Cryst. B33, 2559–2562.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bycroft, B. W. & Roberts, J. C. (1963). J. Org. Chem.28, 1429–1430.
  • Connolly, J. D., Freer, A. A., Kalb, K. & Huneck, S. (1984). Phytochemistry, 23, 857–858.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kawahara, N., Nakajima, S., Satoh, Y., Yamazaki, M. & Kawai, K.-I. (1988). Chem. Pharm. Bull.36, 1970–1975.
  • Lang, G., Cole, A. L. J., Blunt, J. W., Robinson, W. T. & Munro, M. H. G. (2007). J. Nat. Prod.70, 310–311. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McMillan, J. A. S. (1964). Diss. Abstr.25, 868. Order No. 64-8413, 98 pp. Univ. Microfilms, Ann Arbor, Michigan, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, Y. J., Chiang, P. Y., Lai, Y. H., Vittal, J. J., Wu, X. H., Tan, B. K. H., Imiyabir, Z. & Goh, S. H. (2000). J. Nat. Prod.63, 1361–1363. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography