PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2593.
Published online 2009 September 30. doi:  10.1107/S1600536809038379
PMCID: PMC2970281

3,3′-Diethyl-1,1′-[anthracene-9,10-diylbis(oxyethyl­ene)]diimidazolium diiodide

Abstract

In the title centrosymmetric compound, C28H32N4O2 2+ 2I, the two midazole rings are approximately perpendicular to the central anthracene ring system [dihedral angle = 86.6 (2)°]. The ionic units are linked into a two-dimensional network parallel to (An external file that holds a picture, illustration, etc.
Object name is e-65-o2593-efi1.jpg01) by C—H(...)I hydrogen bonds and π–π inter­actions involving the anthracene ring system and imidazole rings [centroid–centroid distance = 3.717 (3) Å].

Related literature

For general background to N-heterocyclic carbenes and their transition metal complexes, see: Bourissou et al. (2000 [triangle]); Herrmann & Kocher (1997 [triangle]); Cavell & McGuinness (2004 [triangle]); Baker et al. (2004 [triangle]); Melaiye et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2593-scheme1.jpg

Experimental

Crystal data

  • C28H32N4O2 2+·2I
  • M r = 710.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2593-efi2.jpg
  • a = 11.4733 (13) Å
  • b = 10.6692 (12) Å
  • c = 13.1553 (15) Å
  • β = 112.725 (2)°
  • V = 1485.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.15 mm−1
  • T = 298 K
  • 0.24 × 0.22 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.627, T max = 0.650
  • 8914 measured reflections
  • 2603 independent reflections
  • 1989 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.102
  • S = 1.07
  • 2603 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038379/ci2907sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038379/ci2907Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Startup Fund for PhDs of Natural Scientific Research of Tianjin Polytechnic University (grant No. 029312).

supplementary crystallographic information

Comment

As ancillary ligands, N-heterocyclic carbenes (NHCs) have received considerable attention due to their strong σ-donor ability, and are attractive alternatives to the widely utilized phosphine ligands in metal coordination chemistry (Bourissou et al., 2000; Herrmann & Kocher, 1997). A number of N-heterocyclic carbene transition metal complexes have been synthesized and isolated, and some of them have been successfully applied as homogeneous catalysts (Cavell & McGuinness, 2004; Baker et al., 2004; Melaiye et al., 2004). Herein, the synthesis and crystal structure of a new biscarbene analogue, (I), is reported.

The asymmetric unit contains one-half of the cation and a iodide anion. The cation of (I) lies across a crystallographic inversion centre (Fig. 1). The two imidazole ring planes are approximately perpendicular to the central anthracene ring system, the dihedral angle between them being 86.6 (2)°.

In the crystal, the ionic units are linked via C—H···I interactions. In addition, the anthracene ring system and imidazole rings of two adjacent molecules are stacked, with a centroid-to-centroid separation of 3.717 (3) Å indicating weak π-π interactions. The C—H···I and π-π interactions link ionic units into a two-dimensional network parallel to the (101) [Fig.2].

Experimental

A mixture of 1,2-bis(2-chloroethoxy)anthracene (6.7 g, 20 mmol) and 1-ethylimidazole (4.22 g, 44 mmol) was refluxed in THF (100 ml) for 24 h, giving a pale yellow precipitate, which was filtered and washed with THF and recrystallized from methanol and ethyl ether. The obtained solid was dissolved in methanol (200 ml) and an aqueous solution of NH4I (4.64 g, 32 mmol) was added to the solution. The precipitate formed was collected by filtration and recrystallized from CH3CN and diethyl ether (1:6 v/v) to give the title compound (yield 95%). Analysis found: C 32.49, H 3.22, N 5.36%; calculated for C28H32N4O2I2: C 32.64, H 3.13, N, 5.44%. 1H NMR (300 M, d6-DMSO): δ9.51 (s, 2 H), 8.03 (s, 2 H), 7.97 (s, 2 H), 7.89–7.86 (m, 4 H), 7.55–7.51 (m, 4 H), 4.85 (t, J = 4.5 Hz, 4 H), 4.49 (t, J = 4.3 Hz, 4 H), 4.35 (q, J = 7.4 Hz, 4 H), 1.51 (t, J = 7.3 Hz, 6 H) p.p.m..

Refinement

H atoms were placed in calculated positions [C-H = 0.93 (aromatic) or 0.97 Å (methylene)] and included in the final cycles of refinement using a riding-model approximation, with Uiso(H) = 1.2Ueq(carrier atom).

Figures

Fig. 1.
The cation of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labeled with the suffix A are generated by the symmetry operation (1-x, 1-y, -z).
Fig. 2.
The packing diagram of (I). Dashed lines indicate C—H···I interactions.

Crystal data

C28H32N4O22+·2IF(000) = 700
Mr = 710.38Dx = 1.588 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5650 reflections
a = 11.4733 (13) Åθ = 0.9–28.4°
b = 10.6692 (12) ŵ = 2.15 mm1
c = 13.1553 (15) ÅT = 298 K
β = 112.725 (2)°Block, colourless
V = 1485.3 (3) Å30.24 × 0.22 × 0.22 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2603 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→13
Tmin = 0.627, Tmax = 0.650k = −12→11
8914 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0505P)2] where P = (Fo2 + 2Fc2)/3
2603 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.42215 (3)0.07079 (3)0.19395 (3)0.06624 (18)
O10.6771 (3)0.6579 (3)0.1484 (2)0.0520 (8)
N10.6819 (4)0.7779 (4)0.4677 (3)0.0628 (11)
N20.7451 (3)0.8096 (3)0.3355 (3)0.0503 (9)
C10.5148 (7)0.6942 (7)0.5210 (6)0.115 (2)
H1A0.47190.70750.56990.172*
H1B0.55440.61320.53490.172*
H1C0.45500.69810.44610.172*
C20.6093 (6)0.7894 (7)0.5390 (5)0.100 (2)
H2A0.66770.78600.61550.120*
H2B0.56840.87080.52660.120*
C30.6648 (5)0.8459 (5)0.3797 (4)0.0603 (13)
H3A0.60550.90960.35270.072*
C40.7780 (5)0.6961 (5)0.4802 (4)0.0723 (16)
H4A0.81070.63750.53650.087*
C50.8164 (5)0.7143 (5)0.3988 (4)0.0651 (14)
H5A0.88000.67050.38680.078*
C60.7488 (5)0.8552 (5)0.2318 (4)0.0637 (13)
H6A0.83150.83920.23070.076*
H6B0.73420.94490.22580.076*
C70.6479 (4)0.7891 (4)0.1346 (3)0.0577 (12)
H7A0.56460.80480.13450.069*
H7B0.64970.81890.06560.069*
C80.5860 (4)0.5813 (4)0.0729 (3)0.0443 (10)
C90.4887 (4)0.5346 (4)0.0997 (3)0.0432 (10)
C100.4733 (5)0.5667 (4)0.1992 (4)0.0534 (12)
H10A0.53100.62040.24950.064*
C110.3758 (5)0.5200 (5)0.2213 (4)0.0642 (13)
H11A0.36760.54170.28670.077*
C120.2873 (5)0.4392 (5)0.1468 (4)0.0655 (14)
H12A0.22050.40830.16280.079*
C130.2987 (5)0.4058 (4)0.0511 (4)0.0557 (12)
H13A0.23960.35170.00270.067*
C140.6018 (4)0.5485 (4)−0.0243 (3)0.0426 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0748 (3)0.0667 (3)0.0669 (2)0.00388 (17)0.0379 (2)0.00174 (16)
O10.0521 (18)0.0522 (19)0.0433 (16)−0.0023 (14)0.0090 (14)−0.0128 (14)
N10.073 (3)0.064 (3)0.048 (2)−0.011 (2)0.020 (2)−0.013 (2)
N20.051 (2)0.052 (2)0.0430 (19)−0.0073 (18)0.0127 (18)−0.0170 (17)
C10.124 (6)0.129 (7)0.115 (5)−0.023 (5)0.072 (5)−0.023 (5)
C20.128 (6)0.118 (5)0.076 (4)−0.036 (4)0.064 (4)−0.031 (4)
C30.066 (3)0.056 (3)0.056 (3)0.003 (2)0.020 (3)−0.012 (2)
C40.081 (4)0.067 (4)0.047 (3)0.002 (3)0.001 (3)0.005 (3)
C50.059 (3)0.067 (3)0.055 (3)0.009 (3)0.008 (3)−0.013 (3)
C60.081 (4)0.060 (3)0.050 (3)−0.019 (3)0.025 (2)−0.011 (2)
C70.072 (3)0.050 (3)0.045 (2)−0.005 (2)0.016 (2)−0.007 (2)
C80.044 (3)0.045 (2)0.039 (2)0.005 (2)0.0102 (19)−0.0063 (19)
C90.049 (3)0.043 (2)0.034 (2)0.012 (2)0.0113 (19)−0.0012 (17)
C100.061 (3)0.055 (3)0.043 (2)0.002 (2)0.018 (2)−0.007 (2)
C110.085 (4)0.069 (3)0.050 (3)0.004 (3)0.039 (3)−0.007 (2)
C120.067 (3)0.071 (4)0.069 (3)0.003 (3)0.037 (3)−0.005 (3)
C130.057 (3)0.052 (3)0.057 (3)−0.001 (2)0.021 (2)−0.007 (2)
C140.043 (2)0.040 (2)0.041 (2)0.0060 (19)0.0121 (19)−0.0009 (18)

Geometric parameters (Å, °)

O1—C81.395 (5)C6—H6A0.97
O1—C71.434 (5)C6—H6B0.97
N1—C31.315 (6)C7—H7A0.97
N1—C41.365 (6)C7—H7B0.97
N1—C21.482 (7)C8—C91.387 (6)
N2—C31.323 (6)C8—C141.402 (6)
N2—C51.368 (6)C9—C101.428 (6)
N2—C61.464 (6)C9—C14i1.432 (5)
C1—C21.437 (8)C10—C111.355 (7)
C1—H1A0.96C10—H10A0.93
C1—H1B0.96C11—C121.402 (7)
C1—H1C0.96C11—H11A0.93
C2—H2A0.97C12—C131.363 (7)
C2—H2B0.97C12—H12A0.93
C3—H3A0.93C13—C14i1.407 (7)
C4—C51.321 (7)C13—H13A0.93
C4—H4A0.93C14—C13i1.407 (7)
C5—H5A0.93C14—C9i1.432 (5)
C6—C71.525 (6)
C8—O1—C7114.0 (3)N2—C6—H6B109.7
C3—N1—C4107.4 (5)C7—C6—H6B109.7
C3—N1—C2125.7 (5)H6A—C6—H6B108.2
C4—N1—C2127.0 (5)O1—C7—C6106.3 (4)
C3—N2—C5107.7 (4)O1—C7—H7A110.5
C3—N2—C6126.0 (4)C6—C7—H7A110.5
C5—N2—C6126.0 (4)O1—C7—H7B110.5
C2—C1—H1A109.5C6—C7—H7B110.5
C2—C1—H1B109.5H7A—C7—H7B108.7
H1A—C1—H1B109.5C9—C8—O1119.0 (4)
C2—C1—H1C109.5C9—C8—C14122.8 (4)
H1A—C1—H1C109.5O1—C8—C14118.0 (4)
H1B—C1—H1C109.5C8—C9—C10122.9 (4)
C1—C2—N1114.2 (5)C8—C9—C14i119.0 (4)
C1—C2—H2A108.7C10—C9—C14i118.1 (4)
N1—C2—H2A108.7C11—C10—C9120.8 (4)
C1—C2—H2B108.7C11—C10—H10A119.6
N1—C2—H2B108.7C9—C10—H10A119.6
H2A—C2—H2B107.6C10—C11—C12120.8 (5)
N1—C3—N2109.5 (4)C10—C11—H11A119.6
N1—C3—H3A125.3C12—C11—H11A119.6
N2—C3—H3A125.3C13—C12—C11120.3 (5)
C5—C4—N1108.3 (5)C13—C12—H12A119.9
C5—C4—H4A125.8C11—C12—H12A119.9
N1—C4—H4A125.8C12—C13—C14i121.2 (4)
C4—C5—N2107.1 (5)C12—C13—H13A119.4
C4—C5—H5A126.4C14i—C13—H13A119.4
N2—C5—H5A126.4C8—C14—C13i123.0 (4)
N2—C6—C7110.0 (4)C8—C14—C9i118.2 (4)
N2—C6—H6A109.7C13i—C14—C9i118.8 (4)
C7—C6—H6A109.7
C3—N1—C2—C1102.4 (7)C7—O1—C8—C9−91.0 (5)
C4—N1—C2—C1−77.6 (7)C7—O1—C8—C1493.1 (4)
C4—N1—C3—N20.6 (5)O1—C8—C9—C103.5 (6)
C2—N1—C3—N2−179.3 (4)C14—C8—C9—C10179.2 (4)
C5—N2—C3—N1−0.1 (5)O1—C8—C9—C14i−177.3 (3)
C6—N2—C3—N1174.7 (4)C14—C8—C9—C14i−1.6 (7)
C3—N1—C4—C5−0.9 (6)C8—C9—C10—C11179.1 (4)
C2—N1—C4—C5179.0 (5)C14i—C9—C10—C11−0.1 (6)
N1—C4—C5—N20.8 (6)C9—C10—C11—C12−0.2 (8)
C3—N2—C5—C4−0.5 (5)C10—C11—C12—C130.5 (8)
C6—N2—C5—C4−175.2 (4)C11—C12—C13—C14i−0.4 (7)
C3—N2—C6—C7−80.2 (6)C9—C8—C14—C13i−179.1 (4)
C5—N2—C6—C793.6 (5)O1—C8—C14—C13i−3.3 (6)
C8—O1—C7—C6173.3 (4)C9—C8—C14—C9i1.6 (6)
N2—C6—C7—O1−60.2 (5)O1—C8—C14—C9i177.3 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···I1ii0.932.893.771 (5)159
C4—H4A···I1iii0.932.973.893 (5)172
C5—H5A···I1iv0.933.053.957 (6)167

Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2907).

References

  • Baker, M. V., Brown, D. H., Haque, R. A., Skelton, B. W. & White, A. H. (2004). J. Chem. Soc. Dalton Trans. pp. 3756–3764. [PubMed]
  • Bourissou, D., Guerret, O., Gabbai, F. P. & Bertrand, G. (2000). Chem. Rev.100, 39–91. [PubMed]
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cavell, K. J. & McGuinness, D. S. (2004). Coord. Chem. Rev. pp. 248–671.
  • Herrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl.36, 2162–2187.
  • Melaiye, A., Simons, R. S., Milsted, A., Pingitore, F., Wesdemiotis, C., Tessier, C. A. & Youngs, W. J. (2004). J. Med. Chem.47, 973–977. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography