PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2434.
Published online 2009 September 12. doi:  10.1107/S1600536809034308
PMCID: PMC2970278

4-Chloro-N-(3-chloro­phen­yl)benzamide

Abstract

The title compound, C13H9Cl2N, has an intra­molecular C—H(...)O close contact, and presents the NH group syn to the meta-chloro group in the aniline ring and trans to the C=O group. The crystal packing is formed by infinite chains of N—H(...)O hydrogen bonds along the c axis. Cl(...)Cl [3.474 (1) Å] contacts link chains. The crystal used for data collection was a twin, the domains related by the twin law 0.948 (1)/0.052 (1).

Related literature

For halogen inter­actions in the benzanilide series, see: Chopra & Guru Row (2005 [triangle], 2008 [triangle]); Saeed et al. (2008 [triangle]); Gowda et al. (2008 [triangle]). For Cl(...)Cl inter­actions, see: Bui et al. (2009 [triangle]). For the program ROTAX, used to determine the twin law, see: Pearson & Gould (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2434-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO
  • M r = 266.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2434-efi1.jpg
  • a = 12.8696 (15) Å
  • b = 9.7485 (10) Å
  • c = 9.8243 (12) Å
  • β = 90.265 (11)°
  • V = 1232.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.51 mm−1
  • T = 292 K
  • 0.42 × 0.28 × 0.19 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with an Eos (Nova) detector
  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.815, T max = 0.910
  • 13416 measured reflections
  • 2407 independent reflections
  • 1678 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.104
  • S = 1.03
  • 2407 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034308/bg2292sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034308/bg2292Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank DST FIST (level II) for funding the XCalibur E Mova diffraction system. SKN thanks CSIR (SRF), INDIA, for financial support. We thank the referee for his valuable comments on handling the twinned crystal.

supplementary crystallographic information

Comment

The Structure of 4-chloro-N-(3-chlorophenyl) benzamide is an extension of our previous work to evaluate the importance of interactions involving halogens in the benzanilide series (Chopra & Guru Row, 2005, 2008). The molecular structure prefers the N—H group to be trans to the CO group resulting in the formation of a C—H···O intramolecular interaction (Fig. 1, Table 1) similar to those found in the flourine compounds (Chopra & Guru Row, 2008; Saeed et al., 2008) (Figure 1). The NHCO group forms dihedral angles of 20.2 (2)and 21.5 (1)° with the aniline and benzoyl rings respectively. The two rings are nearly coplanar, with dihedral angle of 3.7 (2)°. The crystal packing is formed by infinite chains with N—H···O hydrogen bonds along the c axis (Figure 2, Table 1). Similar interactions were observed in the analogous chloro substituted benzanilides (Gowda et al., 2008; Saeed et al., 2008). There is a halogen Cl1···Cl1i contact (i): -x + 1, -y + 2, -z, (3.47 (1) Å, [Type-I, θ12=171.1 (2)°] (Bui et al., 2009) which links chains across an inversion centre, (Figure 2). In addition π···π stacking enhance the stability of the packing across the centres of symmetry .(Cg1···Cg1ii= 3.71 (2)Å, Cg2···Cg2iii = 3.77 (2)Å] ; (ii): 1-x,1-y,1-z ; (iii): -x,2-y,1-z; Cg1: centroid of the C1—>C6 ring; Cg2: centroid of the C8—>C13 ring).

Experimental

The title compound (Scheme) was prepared according to the literature method (Chopra & Guru Row, 2005). The purity of the compound was confirmed by infrared and NMR spectra. Single crystals were grown from ethanol at room temperature and used for X-ray diffraction study.

Refinement

All H atoms were positioned geometrically, (C—H = 0.93 Å, N—H = 0.86 Å) and refined using a riding model with Uiso(H)= 1.2 Ueq(C, N). The crystal used for data collection was a twin, with twin law 1 0 0, 0 1 0, 0 0 1, as disclosed by ROTAX, Pearson & Gould (2003), and confirmed by refinement with the TWIN instruction in SHELXL97, Sheldrick (2008), leading to a distribution (BASF parameter) of 0.948/0.052 (1).

Figures

Fig. 1.
: Molecular structure shows the atom labelling Scheme with displacement ellipsoids for non-H atoms at 50% probability level, hydrogen atoms are arbitary circle. The dotted line shows the C—H···O intramolecular interactions. ...
Fig. 2.
: The molecular packing shows the infinite chain of N—H···O hydrogen bonds along c axis and Cl···Cl interactions as a linker between the chains.

Crystal data

C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 350 reflections
a = 12.8696 (15) Åθ = 1.0–28.0°
b = 9.7485 (10) ŵ = 0.51 mm1
c = 9.8243 (12) ÅT = 292 K
β = 90.265 (11)°Plate, colorless
V = 1232.5 (2) Å30.42 × 0.28 × 0.19 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with an Eos (Nova) detector2407 independent reflections
Radiation source: Enhance (Mo) X-ray Source1678 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = −15→15
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −12→12
Tmin = 0.815, Tmax = 0.910l = −12→12
13416 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0559P)2] where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl2−0.01097 (5)1.07010 (7)0.17348 (7)0.0830 (3)
Cl10.45841 (6)0.16654 (6)0.53117 (7)0.0811 (3)
O10.27955 (14)0.79207 (16)0.68009 (14)0.0682 (5)
N10.24298 (14)0.79496 (18)0.45618 (16)0.0512 (4)
H1N0.25310.75160.38120.061*
C70.28063 (16)0.7347 (2)0.56910 (19)0.0485 (5)
C10.32291 (15)0.5931 (2)0.55447 (18)0.0459 (5)
C90.12551 (16)0.9361 (2)0.3325 (2)0.0513 (5)
H90.12050.86620.26830.062*
C80.18891 (16)0.9205 (2)0.44516 (19)0.0464 (5)
C60.29668 (18)0.5044 (2)0.4485 (2)0.0561 (6)
H60.25100.53390.38100.067*
C20.39013 (18)0.5444 (2)0.6539 (2)0.0599 (6)
H20.40770.60100.72670.072*
C130.19596 (19)1.0256 (2)0.5399 (2)0.0602 (6)
H130.23851.01670.61620.072*
C30.43165 (19)0.4141 (2)0.6475 (2)0.0634 (6)
H30.47730.38360.71470.076*
C40.40478 (17)0.3300 (2)0.5410 (2)0.0559 (6)
C50.33695 (18)0.3742 (2)0.4418 (2)0.0602 (6)
H50.31850.31620.37050.072*
C110.0749 (2)1.1604 (2)0.4082 (3)0.0699 (7)
H110.03641.24030.39630.084*
C100.06962 (18)1.0554 (2)0.3151 (2)0.0577 (6)
C120.1386 (2)1.1438 (3)0.5190 (3)0.0748 (7)
H120.14341.21430.58250.090*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl20.0831 (5)0.0747 (5)0.0911 (5)0.0067 (3)−0.0221 (4)0.0229 (3)
Cl10.0923 (5)0.0617 (4)0.0892 (5)0.0194 (3)−0.0156 (4)0.0071 (3)
O10.1067 (13)0.0635 (9)0.0343 (8)0.0055 (9)0.0007 (8)−0.0038 (7)
N10.0644 (11)0.0550 (10)0.0343 (9)0.0082 (9)−0.0023 (8)−0.0031 (7)
C70.0550 (13)0.0561 (13)0.0344 (11)−0.0050 (10)0.0026 (9)0.0013 (10)
C10.0491 (12)0.0533 (13)0.0351 (10)−0.0028 (10)−0.0013 (9)0.0045 (9)
C90.0556 (13)0.0462 (12)0.0520 (13)−0.0034 (10)0.0010 (10)0.0026 (9)
C80.0492 (12)0.0462 (12)0.0439 (11)−0.0008 (9)0.0080 (9)0.0015 (9)
C60.0640 (14)0.0567 (14)0.0475 (12)0.0033 (11)−0.0149 (11)0.0039 (10)
C20.0721 (15)0.0671 (15)0.0402 (12)0.0010 (12)−0.0125 (11)0.0003 (10)
C130.0698 (15)0.0545 (14)0.0562 (13)−0.0013 (12)−0.0024 (12)−0.0046 (11)
C30.0696 (15)0.0708 (16)0.0497 (13)0.0078 (12)−0.0142 (12)0.0146 (11)
C40.0595 (14)0.0525 (13)0.0557 (13)0.0053 (10)−0.0036 (11)0.0106 (10)
C50.0723 (15)0.0546 (14)0.0536 (13)0.0021 (12)−0.0141 (11)−0.0016 (11)
C110.0802 (17)0.0479 (14)0.0816 (18)0.0108 (12)0.0045 (15)0.0070 (12)
C100.0582 (14)0.0512 (13)0.0638 (14)0.0002 (11)0.0019 (11)0.0132 (11)
C120.096 (2)0.0515 (15)0.0774 (17)0.0021 (14)0.0097 (16)−0.0137 (13)

Geometric parameters (Å, °)

Cl2—C101.738 (2)C6—H60.9300
Cl1—C41.740 (2)C2—C31.380 (3)
O1—C71.226 (2)C2—H20.9300
N1—C71.344 (2)C13—C121.384 (3)
N1—C81.412 (3)C13—H130.9300
N1—H1N0.8600C3—C41.373 (3)
C7—C11.491 (3)C3—H30.9300
C1—C21.385 (3)C4—C51.375 (3)
C1—C61.394 (3)C5—H50.9300
C9—C101.378 (3)C11—C121.369 (4)
C9—C81.381 (3)C11—C101.374 (3)
C9—H90.9300C11—H110.9300
C8—C131.386 (3)C12—H120.9300
C6—C51.372 (3)
C7—N1—C8128.18 (17)C12—C13—C8118.8 (2)
C7—N1—H1N115.9C12—C13—H13120.6
C8—N1—H1N115.9C8—C13—H13120.6
O1—C7—N1121.9 (2)C4—C3—C2119.22 (19)
O1—C7—C1120.94 (18)C4—C3—H3120.4
N1—C7—C1117.11 (17)C2—C3—H3120.4
C2—C1—C6117.5 (2)C3—C4—C5120.7 (2)
C2—C1—C7118.44 (18)C3—C4—Cl1119.41 (17)
C6—C1—C7124.01 (17)C5—C4—Cl1119.90 (18)
C10—C9—C8119.9 (2)C6—C5—C4119.6 (2)
C10—C9—H9120.1C6—C5—H5120.2
C8—C9—H9120.1C4—C5—H5120.2
C9—C8—C13119.6 (2)C12—C11—C10117.9 (2)
C9—C8—N1116.49 (18)C12—C11—H11121.0
C13—C8—N1123.91 (19)C10—C11—H11121.0
C5—C6—C1121.30 (19)C11—C10—C9121.5 (2)
C5—C6—H6119.4C11—C10—Cl2119.93 (18)
C1—C6—H6119.4C9—C10—Cl2118.53 (18)
C3—C2—C1121.6 (2)C11—C12—C13122.3 (2)
C3—C2—H2119.2C11—C12—H12118.9
C1—C2—H2119.2C13—C12—H12118.9
C8—N1—C7—O1−6.8 (3)C9—C8—C13—C120.2 (3)
C8—N1—C7—C1172.39 (18)N1—C8—C13—C12−179.4 (2)
O1—C7—C1—C2−20.6 (3)C1—C2—C3—C4−0.8 (4)
N1—C7—C1—C2160.2 (2)C2—C3—C4—C5−0.3 (4)
O1—C7—C1—C6157.4 (2)C2—C3—C4—Cl1179.05 (18)
N1—C7—C1—C6−21.8 (3)C1—C6—C5—C4−0.2 (3)
C10—C9—C8—C13−0.2 (3)C3—C4—C5—C60.8 (4)
C10—C9—C8—N1179.50 (18)Cl1—C4—C5—C6−178.57 (18)
C7—N1—C8—C9−156.2 (2)C12—C11—C10—C90.6 (4)
C7—N1—C8—C1323.4 (3)C12—C11—C10—Cl2179.3 (2)
C2—C1—C6—C5−0.8 (3)C8—C9—C10—C11−0.3 (3)
C7—C1—C6—C5−178.9 (2)C8—C9—C10—Cl2−178.96 (16)
C6—C1—C2—C31.3 (3)C10—C11—C12—C13−0.6 (4)
C7—C1—C2—C3179.5 (2)C8—C13—C12—C110.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.052.883 (2)163
C13—H13···O10.932.342.868 (3)116

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2292).

References

  • Bui, T. T. T., Dahaoui, S., Lacomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. Int. Ed.48, 3838–3841. [PubMed]
  • Chopra, D. & Guru Row, T. N. (2005). J. Mol. Struct.733, 133–141.
  • Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1300. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Pearson, S. & Gould, B. (2003). ROTAX University of Edinburgh, Scotland, with additions by R. Cooper (Oxford) & L. Farrugua (Glasgow).
  • Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography