PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1203–m1204.
Published online 2009 September 12. doi:  10.1107/S1600536809034746
PMCID: PMC2970276

catena-Poly[bis­(4-amino­pyridinium) [[tetra­aqua­nickel(II)]-μ-benzene-1,2,4,5-tetra­carboxyl­ato] dihydrate]

Abstract

The asymmetric unit of the title compound, {(C5H7N2)2[Ni(C10H2O8)(H2O)4]·2H2O}n, contains an NiII atom, two water mol­ecules of coordination, one half of a benzene-1,2,4,5-tetra­carboxyl­ate (btec) anionic ligand, one 4-amino­pyridinium cation (papy) and an uncoordinated water mol­ecule. The metal center lies on an inversion center and adopts an octa­hedral geometry with the carboxyl­ate groups tilted out of the mean plane formed by the btec. In the crystal, mol­ecules are linked into one-dimensional coordination polymers running along the ac diagonal. The crystal structure is consolidated by N—H(...)O and O—H(...)O hydrogen bonds.

Related literature

For background to 1,2,4,5-benzene-tetra­carboxyl­ate, see: Du et al. (2007 [triangle]); Fang et al. (2008 [triangle]); Loiseau et al. (2005 [triangle]); Ruiz-Pérez et al. (2004 [triangle]); Stephenson & Hardie (2006 [triangle]); Wang et al. (2005 [triangle]). For related structures, see: Majumder et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1203-scheme1.jpg

Experimental

Crystal data

  • (C5H7N2)2[Ni(C10H2O8)(H2O)4]·2H2O
  • M r = 607.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1203-efi1.jpg
  • a = 7.2115 (1) Å
  • b = 9.3470 (1) Å
  • c = 10.6322 (2) Å
  • α = 112.720 (1)°
  • β = 108.830 (1)°
  • γ = 95.582 (1)°
  • V = 605.13 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 296 K
  • 0.50 × 0.34 × 0.27 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.729, T max = 0.785
  • 14068 measured reflections
  • 2219 independent reflections
  • 2203 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.055
  • S = 1.07
  • 2219 reflections
  • 187 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034746/pv2183sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034746/pv2183Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Centro Interdipartimentale per la Diffrazione dei Raggi X in Messina

supplementary crystallographic information

Comment

The 1,2,4,5-benzene-tetracarboxylate (btec) is assessed to be a very versatile ligand able to achieve several coordination modes with different degrees of deprotonation (Du et al. 2007). The specific features of btec prompted researchers to explore different possible coordination polymers bearing specific features (Loiseau et al. 2005; Ruiz-Pérez et al. 2004), expecially in the presence of amines acting as ligands (Stephenson & Hardie, 2006; Wang et al. 2005) and as templates (Fang et al. 2008). Our attempts confirmed that the combination under standard conditins around pH 5 of btec, amines and metals, strictly depended on metals but also on the ancillary amines (yet to be published). The combination of equimolar solutions of nickel chloride, p-aminopyridine and di sodium dihydrogen btec under standard conditions gave two different kinds of green crystals, the rhomboidal-shaped ones (still under study) and the block-shaped ones which were found to be made up of the title compound, (I). The structure of (I) is isomorphous with the already described Co and Cu analogous (Majumder et al., 2006).

The asymmetric unit of (I) is made by half of the metal centre with two coordinated water molecules and half btec ligand, one p-amino pyridinium cation (papy) and another uncoordinated water molecule. The metal centers present the octahedral coordination geometry, whereas carboxylate moieties are tilted out of the btec mean plane in order to develop specific inter-strand and intrastrand hydrogen bonding interactions. The crystallographic symmmetry results in monodimensional coordination polymers running along the diagonal of a and b crystallographic axes. These polymers are kept together by arrays of hydrogen bound papy cations (Fig. 2). The overal paking is obviously stabilized by a crowded hydrogen bonding network (Table 1).

Experimental

An aqueous solution of disodium-dihydrogen 1,2,4,5-benzene tetracarboxylate (25 mmol) was slowly added to an equimolar aqueous solution of NiCl2 (50 mmol). Then an equimolar aqueous solution of p-aminopyridine was added to the mixture. The clear green solution at pH = 5.15 was left covered. After few days a white solid was separed from two different kind of green crystals. The rhomboidal-shaped crystals are under study (Bruno & Rotondo, to be pubblished), whereas the block-shaped ones were identified as I.

Refinement

All hydrogen atoms were located in the difference map and were included in the refinements at geometrically idealized positions in the 'riding mode' with distances O–H, N–H and C–H fixed at 0.85, 0.86 and 0.93 Å, respectively, with temperature factors Uiso(H) = 1.2 Ueq(C/N) and 1.5 Ueq(O).

Figures

Fig. 1.
ORTEP view of I. Displacement ellipsoids are drawn at the 60% probability level. Symmetry codes for the dotted atoms: * -x, -y, -z + 2 and # -x + 1, -y + 1, -z + 2.
Fig. 2.
Molecular packing view of I along the diagonal of a and b axes. The crowded hydrogen bonding network is represented by dotted lines.

Crystal data

(C5H7N2)2[Ni(C10H2O8)(H2O)4]·2H2OZ = 1
Mr = 607.17F(000) = 316
Triclinic, P1Dx = 1.666 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2115 (1) ÅCell parameters from 9901 reflections
b = 9.3470 (1) Åθ = 2.4–31.7°
c = 10.6322 (2) ŵ = 0.88 mm1
α = 112.720 (1)°T = 296 K
β = 108.830 (1)°Block, green
γ = 95.582 (1)°0.5 × 0.34 × 0.27 mm
V = 605.13 (2) Å3

Data collection

Bruker APEXII CCD diffractometer2219 independent reflections
graphite2203 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.023
[var phi] and ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −8→8
Tmin = 0.729, Tmax = 0.785k = −11→11
14068 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0286P)2 + 0.2508P] where P = (Fo2 + 2Fc2)/3
2219 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.3 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10010.01722 (8)
C10.42401 (18)0.39111 (14)1.04216 (14)0.0178 (2)
C20.43069 (18)0.33541 (15)0.90138 (14)0.0180 (2)
C30.50542 (18)0.44605 (15)0.86090 (14)0.0188 (3)
H30.50830.41060.76710.023*
C40.32515 (19)0.28168 (14)1.08810 (14)0.0186 (3)
C50.36527 (19)0.15800 (15)0.79578 (14)0.0210 (3)
O10.14545 (13)0.20052 (10)1.00054 (10)0.02033 (19)
O20.42075 (15)0.28245 (12)1.20874 (11)0.0319 (2)
O30.2586 (2)0.11600 (13)0.66391 (12)0.0458 (3)
O40.42488 (15)0.06463 (11)0.84885 (11)0.0282 (2)
N60.9034 (2)0.28646 (18)1.77371 (15)0.0397 (3)
H60.93970.2441.83360.048*
C70.9976 (2)0.4382 (2)1.81496 (17)0.0379 (4)
H71.10040.49621.90870.046*
C80.9467 (2)0.50850 (18)1.72376 (16)0.0318 (3)
H81.01260.61431.75540.038*
C90.7933 (2)0.42135 (17)1.58003 (15)0.0263 (3)
C100.6936 (2)0.26379 (18)1.54195 (17)0.0323 (3)
H100.58740.20341.45020.039*
C110.7530 (3)0.2008 (2)1.6396 (2)0.0385 (4)
H110.68830.09631.61310.046*
N120.7487 (2)0.48454 (16)1.48525 (14)0.0366 (3)
H12A0.81350.58011.51090.044*
H12B0.65490.431.39810.044*
O1W0.18379 (14)0.05465 (11)1.21508 (10)0.0249 (2)
H1WA0.27670.12941.22940.037*
H1WB0.13530.09311.28060.037*
O2W−0.21078 (14)0.11312 (11)1.06521 (11)0.0250 (2)
H2WA−0.25570.07021.11040.038*
H2WB−0.31210.10880.99370.038*
O3W0.05029 (18)0.17265 (13)0.43489 (12)0.0358 (3)
H3WA0.12480.16930.51340.054*
H3WB−0.06490.10830.40160.054*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.01682 (13)0.01646 (12)0.01797 (13)−0.00033 (9)0.00487 (9)0.00990 (9)
C10.0150 (6)0.0182 (6)0.0194 (6)0.0003 (5)0.0045 (5)0.0102 (5)
C20.0159 (6)0.0171 (6)0.0190 (6)0.0011 (5)0.0046 (5)0.0085 (5)
C30.0188 (6)0.0199 (6)0.0172 (6)0.0013 (5)0.0067 (5)0.0088 (5)
C40.0212 (6)0.0155 (6)0.0190 (6)0.0018 (5)0.0079 (5)0.0082 (5)
C50.0220 (6)0.0179 (6)0.0217 (6)0.0010 (5)0.0090 (5)0.0079 (5)
O10.0182 (4)0.0195 (4)0.0217 (4)−0.0017 (3)0.0049 (4)0.0115 (4)
O20.0300 (5)0.0348 (6)0.0243 (5)−0.0091 (4)−0.0002 (4)0.0193 (4)
O30.0665 (8)0.0240 (5)0.0223 (5)0.0006 (5)−0.0037 (5)0.0059 (4)
O40.0328 (5)0.0210 (5)0.0337 (5)0.0077 (4)0.0129 (4)0.0150 (4)
N60.0492 (8)0.0541 (9)0.0376 (8)0.0307 (7)0.0234 (7)0.0323 (7)
C70.0351 (8)0.0506 (10)0.0244 (7)0.0195 (7)0.0084 (6)0.0136 (7)
C80.0294 (8)0.0299 (7)0.0264 (7)0.0065 (6)0.0061 (6)0.0073 (6)
C90.0253 (7)0.0269 (7)0.0251 (7)0.0072 (6)0.0084 (6)0.0111 (6)
C100.0324 (8)0.0284 (7)0.0303 (8)0.0030 (6)0.0082 (6)0.0120 (6)
C110.0470 (10)0.0332 (8)0.0481 (10)0.0153 (7)0.0256 (8)0.0239 (7)
N120.0378 (7)0.0321 (7)0.0301 (7)−0.0024 (6)−0.0001 (6)0.0176 (6)
O1W0.0239 (5)0.0274 (5)0.0216 (5)−0.0017 (4)0.0062 (4)0.0132 (4)
O2W0.0231 (5)0.0244 (5)0.0301 (5)0.0040 (4)0.0106 (4)0.0149 (4)
O3W0.0413 (6)0.0364 (6)0.0328 (6)0.0062 (5)0.0154 (5)0.0185 (5)

Geometric parameters (Å, °)

Ni1—O12.054 (1)N6—H60.86
Ni1—O1i2.054 (1)C7—C81.347 (2)
Ni1—O1W2.063 (1)C7—H70.93
Ni1—O1Wi2.063 (1)C8—C91.412 (2)
Ni1—O2Wi2.082 (1)C8—H80.93
Ni1—O2W2.082 (1)C9—N121.3249 (19)
C1—C3ii1.3917 (18)C9—C101.413 (2)
C1—C21.4012 (18)C10—C111.357 (2)
C1—C41.5040 (16)C10—H100.93
C2—C31.3894 (17)C11—H110.93
C2—C51.5168 (17)N12—H12A0.86
C3—C1ii1.3917 (18)N12—H12B0.86
C3—H30.93O1W—H1WA0.8491
C4—O21.2416 (16)O1W—H1WB0.8517
C4—O11.2673 (16)O2W—H2WA0.8491
C5—O31.2376 (17)O2W—H2WB0.8517
C5—O41.2496 (17)O3W—H3WA0.8491
N6—C111.342 (2)O3W—H3WB0.8517
N6—C71.344 (2)
O1—Ni1—O1i180C4—O1—Ni1124.64 (8)
O1—Ni1—O1W94.96 (4)C11—N6—C7120.39 (14)
O1i—Ni1—O1W85.04 (4)C11—N6—H6119.8
O1—Ni1—O1Wi85.04 (4)C7—N6—H6119.8
O1i—Ni1—O1Wi94.96 (4)N6—C7—C8121.61 (15)
O1W—Ni1—O1Wi180N6—C7—H7119.2
O1—Ni1—O2Wi87.65 (4)C8—C7—H7119.2
O1i—Ni1—O2Wi92.35 (4)C7—C8—C9119.94 (15)
O1W—Ni1—O2Wi87.40 (4)C7—C8—H8120
O1Wi—Ni1—O2Wi92.60 (4)C9—C8—H8120
O1—Ni1—O2W92.35 (4)N12—C9—C8121.08 (14)
O1i—Ni1—O2W87.65 (4)N12—C9—C10122.01 (13)
O1W—Ni1—O2W92.60 (4)C8—C9—C10116.90 (13)
O1Wi—Ni1—O2W87.40 (4)C11—C10—C9119.85 (15)
O2Wi—Ni1—O2W180C11—C10—H10120.1
C3ii—C1—C2120.00 (11)C9—C10—H10120.1
C3ii—C1—C4118.01 (11)N6—C11—C10121.24 (15)
C2—C1—C4121.77 (11)N6—C11—H11119.4
C3—C2—C1118.62 (11)C10—C11—H11119.4
C3—C2—C5119.85 (11)C9—N12—H12A120
C1—C2—C5121.49 (11)C9—N12—H12B120
C2—C3—C1ii121.37 (12)H12A—N12—H12B120
C2—C3—H3119.3Ni1—O1W—H1WA98.6
C1ii—C3—H3119.3Ni1—O1W—H1WB116.7
O2—C4—O1125.75 (11)H1WA—O1W—H1WB107.6
O2—C4—C1118.41 (11)Ni1—O2W—H2WA109.6
O1—C4—C1115.78 (11)Ni1—O2W—H2WB114
O3—C5—O4124.70 (12)H2WA—O2W—H2WB107.6
O3—C5—C2118.15 (12)H3WA—O3W—H3WB107.6
O4—C5—C2117.15 (11)
C3ii—C1—C2—C3−1.1 (2)O2—C4—O1—Ni1−20.66 (18)
C4—C1—C2—C3173.38 (11)C1—C4—O1—Ni1162.24 (8)
C3ii—C1—C2—C5176.81 (11)O1W—Ni1—O1—C421.65 (10)
C4—C1—C2—C5−8.73 (18)O1Wi—Ni1—O1—C4−158.35 (10)
C1—C2—C3—C1ii1.1 (2)O2Wi—Ni1—O1—C4−65.53 (10)
C5—C2—C3—C1ii−176.83 (11)O2W—Ni1—O1—C4114.47 (10)
C3ii—C1—C4—O2−54.95 (17)C11—N6—C7—C8−0.7 (2)
C2—C1—C4—O2130.48 (13)N6—C7—C8—C9−1.1 (2)
C3ii—C1—C4—O1122.37 (13)C7—C8—C9—N12−176.02 (14)
C2—C1—C4—O1−52.20 (16)C7—C8—C9—C102.8 (2)
C3—C2—C5—O3−45.83 (18)N12—C9—C10—C11175.97 (15)
C1—C2—C5—O3136.30 (14)C8—C9—C10—C11−2.9 (2)
C3—C2—C5—O4133.70 (13)C7—N6—C11—C100.7 (2)
C1—C2—C5—O4−44.16 (17)C9—C10—C11—N61.2 (2)

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N6—H6···O1iii0.862.122.926 (1)156
N12—H12B···O20.862.002.856 (2)171
N12—H12A···O3Wii0.862.193.048 (2)174
O1W—H1WA···O20.851.812.634 (1)163
O1W—H1WB···O3Wiv0.851.852.697 (1)175
O2W—H2WA···O4i0.851.932.750 (1)162
O2W—H2WB···O4v0.851.902.732 (1)165
O3W—H3WA···O30.851.862.694 (2)168
O3W—H3WB···O3vi0.852.122.911 (2)154

Symmetry codes: (iii) x+1, y, z+1; (ii) −x+1, −y+1, −z+2; (iv) x, y, z+1; (i) −x, −y, −z+2; (v) x−1, y, z; (vi) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2183).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Du, Z.-X., Li, J.-X., Zhang, G.-Y. & Hou, H.-W. (2007). Z. Kristallogr.222, 107–108.
  • Fang, Q., Zhu, G., Xue, M., Wang, Z., Sun, J. & Qiu, S. (2008). Cryst. Growth Des.8, 319–329.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Loiseau, T., Muguerra, H., Haouas, M., Taulelle, F. & Férey, G. (2005). Solid State Sci.7, 603–609.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Majumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., El Fallah, M. S., Ribas, J., Sutter, J.-P., Desplanches, C. & Mitra, S. (2006). Cryst. Growth Des.6, 2355–2368.
  • Ruiz-Pérez, C., Lorenzo-Luis, P., Hernández-Molina, M., Laz, M. M., Delgado, F. S., Gili, P. & Julve, M. (2004). Eur. J. Inorg. Chem. pp. 3873–3879.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des.6, 423–432.
  • Wang, P., Moorefield, C. N., Panzerc, M. & Newkome, G. R. (2005). Chem. Commun. pp. 465–467. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography