PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1217–m1218.
Published online 2009 September 16. doi:  10.1107/S1600536809036344
PMCID: PMC2970271

Poly[[aqua­(μ2-oxalato)(μ2-2-oxido­pyridinium-3-carboxylato)holmium(III)] monohydrate]

Abstract

In the title complex, {[Ho(C2O4)(C6H4NO3)(H2O)]·(H2O)}n, the HoIII ion is coordinated by three O atoms from two 2-oxidopyridinium-3-carboxylate ligands, four O atoms from two oxalate ligands and one water mol­ecule in a distorted bicapped trigonal-prismatic geometry. The 2-oxidopyridin­ium-3-carboxylate and oxalate ligands link the HoIII ions into a layer in (100). These layers are further connected by inter­molecular O—H(...)O hydrogen bonds involving the coordinated water mol­ecules to assemble a three-dimensional supra­molecular network. The uncoordin­ated water mol­ecule is involved in N—H(...)O and O—H(...)O hydrogen bonds within the layer.

Related literature

For general background to mol­ecular self-assembly of supra­molecular architectures, see: Deng et al. (2008 [triangle]); Zeng et al. (2007 [triangle]). For 2-oxidopyridinium-3-carboxylic acid and oxalic acid as building blocks, see: Huang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1217-scheme1.jpg

Experimental

Crystal data

  • [Ho(C2O4)(C6H4NO3)(H2O)]·H2O
  • M r = 427.08
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1217-efi1.jpg
  • a = 6.5391 (11) Å
  • b = 9.5305 (16) Å
  • c = 9.7391 (16) Å
  • α = 71.810 (2)°
  • β = 78.862 (2)°
  • γ = 80.359 (2)°
  • V = 562.01 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 7.09 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.332, T max = 0.379
  • 2884 measured reflections
  • 1983 independent reflections
  • 1862 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.090
  • S = 1.06
  • 1983 reflections
  • 184 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.75 e Å−3
  • Δρmin = −2.19 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036344/hy2226sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036344/hy2226Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Chan Xue Yan Cooperative Special Project of Guangdong Province and the Ministry of Science and Technology of China (project No. 2007A090302046), the Project of Science and Technology of Guangdong Province (project No. 2007A020200002-4) and the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for supporting this work.

supplementary crystallographic information

Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Deng et al., 2008; Zeng et al., 2007). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π–π stacking interactions. As a building block, 2-oxynicotinic acid and oxalic acid are good ligands with multifunctional coordination sites providing a high likelihood for the generation of structures with high dimensions (Huang et al., 2009). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

In the title compound (Fig. 1), the HoIII centre is eight-coordinated by seven O atoms from two 2-oxynicotinate ligands and two oxalate ligands, and by one water molecule in a distorted bicapped trigonal prismatic geometry, with Ho—O distances and O—Ho—O angles ranging from 2.279 (5) to 2.406 (4) Å and 67.30 (17) to 148.26 (17)°, respectively (Table 1). The carboxylate groups of the 2-oxynicotinates and oxalates act as bridging ligands, linking the Ho centres into a layer parallel to the (100) plane (Fig. 2). The layers are further connected by intermolecular O—H···O hydrogen bonds involving the coordinated water molecules into a three-dimensional supramolecular network (Table 2). The uncoordinated water molecule is involved in N—H···O and O—H···O hydrogen bonds within the layer (Table 2).

Experimental

A mixture of Ho2O3 (0.375 g, 1 mmol), 2-oxynicotinic acid (0.127 g, 1 mmol), oxalic acid (0.09 g, 1 mmol), water (10 ml) in the presence of HNO3 (0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 446 K for 2 d, and then cooled to room temperature at 5 K h-1, giving colourless block crystals.

Refinement

Water H atoms were tentatively located in difference Fourier maps and refined with distance restraints of O—H = 0.84 (1) and H···H = 1.35 (1) Å, and with a fixed Uiso(H) = 0.064 Å2. H atoms attached to C and N atoms were placed at calculated positions and treated as riding on their parent atoms, with C—H = 0.93 and N—H= 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). The highest residual electron density was found 0.94 Å from Ho1 and the deepest hole 0.91 Å from Ho1.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y, 1 - z; (ii) -x, 1 - y, -z; (iii) -x, 1 - y, 1 - z.]
Fig. 2.
View of a layered network of the title compound.

Crystal data

[Ho(C2O4)(C6H4NO3)(H2O)]·H2OZ = 2
Mr = 427.08F(000) = 404
Triclinic, P1Dx = 2.524 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5391 (11) ÅCell parameters from 2285 reflections
b = 9.5305 (16) Åθ = 2.2–28.1°
c = 9.7391 (16) ŵ = 7.09 mm1
α = 71.810 (2)°T = 296 K
β = 78.862 (2)°Block, colourless
γ = 80.359 (2)°0.20 × 0.18 × 0.17 mm
V = 562.01 (16) Å3

Data collection

Bruker APEXII CCD diffractometer1983 independent reflections
Radiation source: fine-focus sealed tube1862 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→6
Tmin = 0.332, Tmax = 0.379k = −11→11
2884 measured reflectionsl = −11→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0695P)2] where P = (Fo2 + 2Fc2)/3
1983 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 2.75 e Å3
6 restraintsΔρmin = −2.19 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ho10.09083 (4)0.29059 (3)0.30045 (3)0.01784 (15)
O4−0.1655 (7)0.3863 (5)0.1370 (5)0.0219 (10)
O30.1549 (8)0.1295 (6)0.1626 (5)0.0311 (11)
O60.1351 (9)0.3228 (5)0.5267 (6)0.0338 (12)
O10.2127 (8)0.0581 (5)0.4520 (5)0.0251 (10)
O5−0.2292 (7)0.5458 (5)−0.0767 (5)0.0258 (10)
N10.2729 (11)−0.0557 (8)0.0581 (7)0.0366 (15)
H10.24070.0054−0.02270.044*
C60.2307 (12)−0.0067 (8)0.1802 (8)0.0266 (15)
C80.0606 (11)0.4422 (8)0.5578 (8)0.0261 (15)
C50.3624 (14)−0.1948 (10)0.0574 (10)0.044 (2)
H50.3862−0.2213−0.02900.052*
C40.4170 (14)−0.2947 (9)0.1807 (10)0.048 (3)
H40.4851−0.38820.17950.057*
C30.3695 (13)−0.2550 (9)0.3094 (10)0.0396 (19)
H30.3999−0.32500.39600.048*
C20.2776 (10)−0.1133 (7)0.3126 (7)0.0251 (15)
C10.2306 (10)−0.0747 (7)0.4529 (7)0.0236 (14)
C7−0.1147 (10)0.4807 (7)0.0161 (7)0.0190 (13)
O2W0.2278 (13)0.0635 (9)0.7646 (8)0.0621 (19)
O20.2125 (7)−0.1813 (5)0.5703 (5)0.0262 (10)
O70.0730 (9)0.4748 (6)0.6691 (5)0.0358 (13)
O1W0.4526 (8)0.2970 (7)0.2822 (6)0.0427 (15)
H3W0.164 (16)0.149 (7)0.758 (10)0.064*
H4W0.203 (16)0.041 (10)0.691 (6)0.064*
H1W0.508 (12)0.263 (11)0.359 (5)0.064*
H2W0.549 (10)0.332 (11)0.215 (6)0.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ho10.0166 (2)0.0197 (2)0.0158 (2)−0.00221 (12)−0.00168 (12)−0.00363 (13)
O40.018 (2)0.027 (2)0.017 (2)−0.0088 (18)−0.0019 (18)0.0028 (19)
O30.039 (3)0.031 (3)0.020 (2)0.002 (2)−0.005 (2)−0.007 (2)
O60.046 (3)0.023 (3)0.034 (3)0.010 (2)−0.013 (2)−0.013 (2)
O10.027 (3)0.024 (2)0.022 (2)−0.0029 (19)−0.0024 (19)−0.0050 (19)
O50.016 (2)0.035 (3)0.023 (2)−0.0035 (19)−0.0071 (19)−0.001 (2)
N10.040 (4)0.043 (4)0.028 (3)−0.009 (3)0.003 (3)−0.016 (3)
C60.025 (4)0.027 (4)0.029 (4)−0.007 (3)−0.001 (3)−0.010 (3)
C80.024 (4)0.026 (4)0.028 (4)−0.005 (3)−0.003 (3)−0.007 (3)
C50.048 (5)0.046 (5)0.042 (5)−0.011 (4)0.014 (4)−0.028 (4)
C40.055 (6)0.036 (5)0.050 (6)−0.008 (4)0.013 (5)−0.021 (5)
C30.038 (5)0.032 (4)0.047 (5)0.000 (3)0.001 (4)−0.015 (4)
C20.018 (3)0.025 (3)0.029 (4)−0.008 (3)0.007 (3)−0.006 (3)
C10.012 (3)0.026 (3)0.028 (4)0.000 (3)−0.003 (3)−0.003 (3)
C70.018 (3)0.020 (3)0.020 (3)−0.006 (2)0.001 (3)−0.007 (3)
O2W0.069 (5)0.078 (5)0.041 (4)−0.022 (4)−0.020 (4)−0.005 (4)
O20.019 (2)0.027 (3)0.027 (3)−0.0043 (19)−0.0037 (19)0.002 (2)
O70.056 (4)0.031 (3)0.024 (3)0.008 (2)−0.018 (2)−0.013 (2)
O1W0.021 (3)0.062 (4)0.029 (3)−0.012 (3)−0.008 (2)0.015 (3)

Geometric parameters (Å, °)

Ho1—O12.354 (5)C6—C21.421 (10)
Ho1—O2i2.348 (5)C8—O71.237 (9)
Ho1—O32.279 (5)C8—C8iii1.546 (15)
Ho1—O42.406 (4)C5—C41.347 (13)
Ho1—O5ii2.364 (5)C5—H50.9300
Ho1—O62.394 (5)C4—C31.384 (11)
Ho1—O7iii2.392 (5)C4—H40.9300
Ho1—O1W2.348 (5)C3—C21.390 (10)
O4—C71.262 (8)C3—H30.9300
O3—C61.279 (9)C2—C11.487 (10)
O6—C81.263 (9)C1—O21.271 (8)
O1—C11.249 (8)C7—C7ii1.554 (12)
O5—C71.232 (8)O2W—H3W0.84 (7)
O5—Ho1ii2.364 (4)O2W—H4W0.86 (7)
N1—C51.358 (11)O1W—H1W0.84 (6)
N1—C61.373 (10)O1W—H2W0.85 (7)
N1—H10.8600
O3—Ho1—O1W90.4 (2)C5—N1—C6123.9 (7)
O3—Ho1—O2i90.37 (18)C5—N1—H1118.0
O1W—Ho1—O2i148.26 (17)C6—N1—H1118.0
O3—Ho1—O173.45 (17)O3—C6—N1116.8 (7)
O1W—Ho1—O175.15 (18)O3—C6—C2127.2 (7)
O2i—Ho1—O174.69 (16)N1—C6—C2116.1 (7)
O3—Ho1—O5ii81.80 (17)O7—C8—O6127.4 (7)
O1W—Ho1—O5ii67.83 (16)O7—C8—C8iii117.7 (8)
O2i—Ho1—O5ii143.49 (16)O6—C8—C8iii114.9 (8)
O1—Ho1—O5ii134.91 (16)C4—C5—N1120.6 (8)
O3—Ho1—O7iii148.06 (18)C4—C5—H5119.7
O1W—Ho1—O7iii105.7 (2)N1—C5—H5119.7
O2i—Ho1—O7iii89.77 (18)C5—C4—C3118.5 (8)
O1—Ho1—O7iii136.83 (16)C5—C4—H4120.7
O5ii—Ho1—O7iii79.25 (18)C3—C4—H4120.7
O3—Ho1—O6144.55 (17)C4—C3—C2121.7 (8)
O1W—Ho1—O675.0 (2)C4—C3—H3119.1
O2i—Ho1—O686.35 (18)C2—C3—H3119.1
O1—Ho1—O671.64 (16)C3—C2—C6119.1 (7)
O5ii—Ho1—O6119.81 (18)C3—C2—C1120.1 (7)
O7iii—Ho1—O667.30 (17)C6—C2—C1120.8 (6)
O3—Ho1—O477.17 (17)O1—C1—O2122.8 (6)
O1W—Ho1—O4135.57 (16)O1—C1—C2119.9 (6)
O2i—Ho1—O475.25 (15)O2—C1—C2117.3 (6)
O1—Ho1—O4137.32 (16)O5—C7—O4126.5 (6)
O5ii—Ho1—O468.24 (14)O5—C7—C7ii117.4 (7)
O7iii—Ho1—O472.00 (17)O4—C7—C7ii116.0 (7)
O6—Ho1—O4135.14 (16)H3W—O2W—H4W105 (9)
C7—O4—Ho1118.2 (4)C1—O2—Ho1i128.4 (4)
C6—O3—Ho1136.0 (5)C8—O7—Ho1iii119.8 (5)
C8—O6—Ho1120.3 (5)Ho1—O1W—H1W119 (6)
C1—O1—Ho1136.8 (4)Ho1—O1W—H2W136 (6)
C7—O5—Ho1ii119.9 (4)H1W—O1W—H2W106 (3)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iv0.84 (6)2.02 (6)2.737 (7)142 (8)
O1W—H2W···O4v0.85 (7)1.96 (4)2.749 (7)154 (8)
O2W—H3W···O60.84 (7)2.36 (11)2.882 (10)121 (8)
O2W—H4W···O10.86 (7)2.27 (3)3.082 (8)157 (9)
N1—H1···O2Wvi0.861.992.781 (10)154

Symmetry codes: (iv) −x+1, −y, −z+1; (v) x+1, y, z; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2226).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deng, H., Qiu, Y.-C., Li, Y.-H., Liu, Z.-H., Zeng, R.-H., Zeller, M. & Batten, S. R. (2008). Chem. Commun. pp. 2239–2241. [PubMed]
  • Huang, C.-D., Huang, J.-X., Wu, Y.-Y., Lian, Y.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m177–m178. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography