PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1189–m1190.
Published online 2009 September 9. doi:  10.1107/S1600536809034722
PMCID: PMC2970270

Poly[[aqua­(μ-4,4′-bipyridyl-κ2 N:N′)bis­(μ-formato-κ2 O:O′)iron(II)] tetra­hydrate]

Abstract

In the title compound, {[Fe(CHO2)2(C10H8N2)(H2O)]·4H2O}n, the FeII ion is coordinated by two 4,4′-bipyridyl (4,4′-bpy) ligands, three formate ligands and one water molecule. The slightly distorted octahedral FeN2O4 coordination results from the N atoms of two bridging 4,4′-bpy ligands, the O atoms of two bridging HCOO anions of anti–anti mode, all in trans positions around the metal centre, and the O atoms of one terminal HCOO anion and of one water molecule. The bridging formate ligands link the metal ions into chains that are further connected via 4,4′-bpy ligands into a framework structure. The three-dimensional structure is stabilized by extensive O—H(...)O hydrogen bonding. The crystals were twinned containing a 0.84:0.16 racemate.

Related literature

For the potential applications of metal-organic frameworks, see: Jia et al. (2007 [triangle]); Hagrman et al. (1999 [triangle]); Kortz et al. (2003 [triangle]); Li et al. (1996 [triangle]); Liu et al. (2007 [triangle]); Seo et al. (2000 [triangle]); Wang et al. (2007 [triangle]); Yaghi et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1189-scheme1.jpg

Experimental

Crystal data

  • [Fe(CHO2)2(C10H8N2)(H2O)]·4H2O
  • M r = 392.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1189-efi6.jpg
  • a = 10.5021 (6) Å
  • b = 20.1959 (11) Å
  • c = 8.1256 (4) Å
  • β = 102.367 (1)°
  • V = 1683.44 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.94 mm−1
  • T = 273 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.895, T max = 0.928
  • 4376 measured reflections
  • 2523 independent reflections
  • 2468 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.084
  • S = 1.00
  • 2523 reflections
  • 248 parameters
  • 19 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.42 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1036 Friedel pairs
  • Flack parameter: 0.158 (18)

Data collection: SMART (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034722/pv2199sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034722/pv2199Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Chinese Academy of Sciences (‘Hundred Talents Program’) and the Ministry of Science and Technology of China (project of ‘973’ plan, No. 2007CB607606)

supplementary crystallographic information

Comment

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs but also for their potential applications in the areas of catalysis, separation, gas absorption, molecular recognition, nonlinear optics, and magnetochemistry (Jia et al., 2007; Li et al., 1996; Seo et al., 2000; Hagrman et al., 1999; Yaghi et al., 1998; Kortz et al., 2003; Liu et al., 2007; Wang et al., 2007). A successful strategy for the design and synthesis of predictable MOFs is the assembly reaction between metal ions and well designed organic ligands. In this paper, we report the preparation and crystal structure of the title compound, (I).

The FeII ion in the title compound (Fig. 1) is octahedrally coordinated by two bridging 4,4'-bipyridyl (4,4'-bpy) ligands, two bridging HCOO- (O1—C1—O2) groups in an anti-anti mode, all in trans positions around the metal ion, one terminal HCOO- (O3—C2—O4), and one H2O molecule. The bridging formate ligands link metal ions to form chains running along the ac direction. The chain is further connected to other chains via 4,4'-bpy ligands. The three-dimensional structure is stabilized by extensive hydrogen bonding (Fig. 2 and Table 1).

Experimental

The crystallization was performed in a 25 ml Teflon-lined stainless steel vessel. A mixture of 4,4'-bipyridyl ligand (1 mmol), iron(II) chloride tetrahydrate (1 mmol), and sodium formate (1 mmol) in 14 ml water was heated to 443 K, and kept at this temperature for one day. Green crystals were obtained after cooling to room temperature with the yield 75%.

Refinement

The space group Cc was determined from successful refinement of the structure. However, an analysis of the data and a high value of Flack parameter indicated twinning which was resolved by applying an appropriate twin law and using 1031 Friedel pairs which were not merged. The BASF parameter was 0.1728, indicating a 0.83:0.17 racemate. All hydrogen atoms bound to carbon atoms were refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H-atoms of the water molecules are included in the refinement using the 'DFIX' command with the H-atoms separated by 1.38 Å, and the H—O bonds were constrained to be 0.82 Å with error 0.01. An overall Uiso was allowed for all H-atoms of water molecules.

Figures

Fig. 1.
A view of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes for atoms: N1A, x+1/2, -y+3/2, z+1/2 and O2B, x+1/2, y-1/2, z.
Fig. 2.
Packing diagram of the title compound showing hydrogen bonding; H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

[Fe(CHO2)2(C10H8N2)(H2O)]·4H2OF(000) = 816
Mr = 392.15Dx = 1.547 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4008 reflections
a = 10.5021 (6) Åθ = 2.2–28.3°
b = 20.1959 (11) ŵ = 0.94 mm1
c = 8.1256 (4) ÅT = 273 K
β = 102.367 (1)°Block, green
V = 1683.44 (16) Å30.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2523 independent reflections
Radiation source: fine-focus sealed tube2468 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −12→11
Tmin = 0.895, Tmax = 0.928k = −19→24
4376 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084w = 1/[σ2(Fo2) + (0.071P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2523 reflectionsΔρmax = 0.31 e Å3
248 parametersΔρmin = −0.42 e Å3
19 restraintsAbsolute structure: Flack (1983), 1036 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.158 (18)

Special details

Experimental. Elemental Analysis. Calc. for C12H20FeN2O9: C 36.73, H 5.10, N 12.24%; Found: C 36.65, H 5.02, N 12.14%.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.99831 (11)0.753902 (16)0.64202 (13)0.01649 (13)
C10.7398 (3)0.72764 (15)0.4049 (4)0.0274 (6)
H10.72120.77130.42730.033*
C21.0318 (4)0.76341 (18)0.2832 (5)0.0339 (8)
H20.98010.72560.26860.041*
C30.7896 (3)0.85353 (16)0.6887 (5)0.0342 (7)
H30.75270.81580.72450.041*
C40.7264 (3)0.91325 (17)0.6933 (4)0.0338 (7)
H40.64870.91490.73060.041*
C50.7789 (3)0.97064 (15)0.6424 (4)0.0294 (8)
C60.8935 (4)0.96383 (17)0.5850 (5)0.0401 (9)
H60.93211.00070.54750.048*
C70.9502 (4)0.90224 (16)0.5837 (5)0.0381 (8)
H71.02690.89890.54450.046*
C80.7165 (3)1.03639 (15)0.6479 (4)0.0280 (7)
C90.5937 (3)1.04287 (16)0.6846 (5)0.0359 (8)
H90.54931.00550.70900.043*
C100.5377 (3)1.10457 (17)0.6847 (5)0.0355 (8)
H100.45551.10760.70960.043*
C110.7777 (4)1.09450 (16)0.6157 (5)0.0355 (8)
H110.86091.09320.59320.043*
C120.7138 (3)1.15402 (16)0.6174 (4)0.0327 (8)
H120.75591.19230.59380.039*
N10.5956 (3)1.16024 (12)0.6509 (3)0.0276 (6)
N20.9005 (3)0.84703 (12)0.6360 (3)0.0267 (6)
O10.8405 (2)0.70271 (10)0.4923 (3)0.0311 (5)
O20.6621 (2)0.69888 (11)0.2902 (3)0.0305 (5)
O31.0696 (2)0.78393 (11)0.4317 (3)0.0330 (5)
O41.0559 (3)0.78812 (16)0.1566 (4)0.0569 (8)
O50.9382 (3)0.73151 (14)0.8633 (3)0.0370 (6)
O60.7891 (3)0.63516 (14)0.9637 (4)0.0482 (6)
O70.6017 (4)0.5754 (3)0.4995 (8)0.1160 (19)
O80.7346 (5)0.51513 (19)0.7912 (5)0.0972 (14)
O90.8996 (3)0.40816 (15)0.7836 (4)0.0561 (8)
H1W0.946 (5)0.7580 (16)0.942 (5)0.080*
H2W0.892 (4)0.6994 (13)0.871 (5)0.080*
H3W0.727 (3)0.660 (2)0.963 (5)0.080*
H4W0.822 (5)0.620 (2)1.057 (3)0.080*
H5W0.644 (5)0.5542 (19)0.444 (7)0.080*
H6W0.626 (5)0.6138 (10)0.518 (7)0.080*
H7W0.692 (4)0.531 (2)0.703 (3)0.080*
H8W0.761 (5)0.5426 (16)0.865 (4)0.080*
H9W0.850 (4)0.4397 (15)0.764 (6)0.080*
H10W0.885 (5)0.383 (2)0.856 (5)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0162 (2)0.01436 (18)0.0163 (2)0.00272 (16)−0.00227 (13)−0.00061 (15)
C10.0252 (14)0.0238 (13)0.0303 (15)−0.0001 (15)−0.0001 (12)0.0005 (15)
C20.0352 (19)0.0367 (16)0.030 (2)−0.0028 (15)0.0070 (15)−0.0049 (15)
C30.037 (2)0.0232 (16)0.0437 (18)0.0014 (14)0.0122 (15)0.0034 (13)
C40.0307 (19)0.0267 (17)0.045 (2)0.0046 (13)0.0110 (14)0.0010 (13)
C50.028 (2)0.0250 (16)0.0321 (17)0.0044 (12)0.0001 (14)−0.0016 (12)
C60.040 (2)0.0225 (17)0.061 (2)0.0034 (13)0.0188 (18)0.0044 (15)
C70.0352 (19)0.0268 (16)0.056 (2)0.0049 (13)0.0171 (15)−0.0004 (15)
C80.032 (2)0.0226 (15)0.0276 (16)0.0048 (12)0.0014 (14)0.0007 (12)
C90.0319 (18)0.0238 (16)0.053 (2)0.0017 (12)0.0111 (16)0.0050 (14)
C100.0259 (18)0.0288 (16)0.053 (2)0.0048 (12)0.0121 (15)0.0011 (14)
C110.0274 (18)0.0280 (17)0.051 (2)0.0042 (13)0.0073 (15)0.0010 (14)
C120.0303 (18)0.0231 (16)0.0438 (19)0.0005 (12)0.0059 (15)0.0011 (13)
N10.0275 (13)0.0231 (13)0.0300 (13)0.0046 (10)0.0009 (11)0.0000 (10)
N20.0266 (14)0.0217 (13)0.0295 (13)0.0040 (10)0.0005 (11)−0.0010 (10)
O10.0256 (12)0.0278 (11)0.0339 (12)0.0014 (9)−0.0067 (10)−0.0007 (9)
O20.0278 (11)0.0285 (12)0.0290 (12)0.0007 (9)−0.0079 (10)−0.0037 (9)
O30.0379 (13)0.0348 (13)0.0252 (12)−0.0003 (10)0.0040 (10)−0.0025 (9)
O40.0724 (19)0.070 (2)0.0291 (13)−0.0197 (15)0.0119 (12)−0.0044 (13)
O50.0461 (16)0.0362 (13)0.0292 (13)−0.0115 (12)0.0090 (11)−0.0025 (11)
O60.0475 (15)0.0446 (15)0.0538 (17)0.0017 (11)0.0134 (12)0.0059 (12)
O70.089 (3)0.092 (3)0.161 (6)−0.021 (3)0.013 (3)0.057 (3)
O80.124 (4)0.068 (3)0.086 (3)0.017 (2)−0.008 (2)−0.020 (2)
O90.063 (2)0.0502 (18)0.0540 (18)−0.0072 (14)0.0096 (15)0.0084 (13)

Geometric parameters (Å, °)

Fe1—O52.079 (3)C8—C91.390 (5)
Fe1—O32.097 (3)C8—C111.390 (5)
Fe1—O12.105 (2)C9—C101.378 (5)
Fe1—O2i2.105 (2)C9—H90.9300
Fe1—N22.139 (3)C10—N11.334 (4)
Fe1—N1ii2.144 (3)C10—H100.9300
C1—O11.247 (4)C11—C121.378 (5)
C1—O21.243 (4)C11—H110.9300
C1—H10.9300C12—N11.333 (5)
C2—O41.218 (5)C12—H120.9300
C2—O31.257 (4)N1—Fe1iii2.144 (3)
C2—H20.9300O2—Fe1iv2.105 (2)
C3—N21.330 (4)O5—H1W0.82 (4)
C3—C41.381 (5)O5—H2W0.82 (3)
C3—H30.9300O6—H3W0.82 (4)
C4—C51.384 (5)O6—H4W0.82 (3)
C4—H40.9300O7—H5W0.82 (5)
C5—C61.388 (5)O7—H6W0.82 (3)
C5—C81.486 (4)O8—H7W0.82 (3)
C6—C71.380 (5)O8—H8W0.82 (3)
C6—H60.9300O9—H9W0.82 (4)
C7—N21.338 (4)O9—H10W0.82 (4)
C7—H70.9300
O5—Fe1—O3174.46 (10)N2—C7—H7118.3
O5—Fe1—O192.60 (10)C6—C7—H7118.3
O3—Fe1—O192.62 (10)C9—C8—C11116.7 (3)
O5—Fe1—O2i88.06 (9)C9—C8—C5121.7 (3)
O3—Fe1—O2i86.81 (9)C11—C8—C5121.6 (3)
O1—Fe1—O2i177.17 (10)C10—C9—C8120.0 (3)
O5—Fe1—N288.72 (11)C10—C9—H9120.0
O3—Fe1—N288.90 (10)C8—C9—H9120.0
O1—Fe1—N295.96 (9)N1—C10—C9123.3 (3)
O2i—Fe1—N286.81 (10)N1—C10—H10118.4
O5—Fe1—N1ii90.57 (11)C9—C10—H10118.4
O3—Fe1—N1ii91.81 (10)C12—C11—C8119.3 (3)
O1—Fe1—N1ii84.07 (9)C12—C11—H11120.4
O2i—Fe1—N1ii93.18 (10)C8—C11—H11120.4
N2—Fe1—N1ii179.28 (13)N1—C12—C11124.1 (3)
O1—C1—O2125.4 (3)N1—C12—H12117.9
O1—C1—H1117.3C11—C12—H12117.9
O2—C1—H1117.3C12—N1—C10116.6 (3)
O4—C2—O3126.6 (4)C12—N1—Fe1iii122.3 (2)
O4—C2—H2116.7C10—N1—Fe1iii121.0 (2)
O3—C2—H2116.7C3—N2—C7116.6 (3)
N2—C3—C4123.6 (3)C3—N2—Fe1121.9 (2)
N2—C3—H3118.2C7—N2—Fe1121.4 (2)
C4—C3—H3118.2C1—O1—Fe1126.7 (2)
C3—C4—C5119.9 (3)C1—O2—Fe1iv122.8 (2)
C3—C4—H4120.1C2—O3—Fe1126.3 (2)
C5—C4—H4120.1Fe1—O5—H1W122 (3)
C4—C5—C6116.6 (3)Fe1—O5—H2W122 (3)
C4—C5—C8122.2 (3)H1W—O5—H2W115 (4)
C6—C5—C8121.3 (3)H3W—O6—H4W114 (4)
C7—C6—C5119.9 (3)H5W—O7—H6W114 (5)
C7—C6—H6120.1H7W—O8—H8W114 (4)
C5—C6—H6120.1H9W—O9—H10W115 (5)
N2—C7—C6123.4 (3)

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x+1/2, y−1/2, z; (iii) x−1/2, y+1/2, z; (iv) x−1/2, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1W···O4v0.82 (4)1.97 (4)2.693 (4)146 (6)
O6—H3W···O3vi0.82 (4)1.98 (4)2.792 (4)173 (4)
O6—H4W···O9vii0.82 (3)1.93 (3)2.753 (4)175 (5)
O7—H5W···O8viii0.82 (5)2.22 (5)3.028 (9)171 (4)
O7—H6W···O4vi0.82 (3)2.46 (3)3.117 (7)137 (4)
O9—H10W···O1vii0.82 (4)2.16 (4)2.954 (4)165 (5)
O7—H6W···O20.82 (3)2.61 (5)3.158 (5)125 (5)
O8—H7W···O70.82 (3)1.94 (3)2.763 (7)174 (5)
O8—H8W···O60.82 (3)2.03 (2)2.797 (5)155 (4)
O9—H9W···O80.82 (4)1.99 (4)2.779 (5)163 (5)
O5—H2W···O60.82 (3)1.94 (4)2.729 (4)161 (4)

Symmetry codes: (v) x, y, z+1; (vi) x−1/2, −y+3/2, z+1/2; (vii) x, −y+1, z+1/2; (viii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2199).

References

  • Bruker (2005). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [PubMed]
  • Jia, H. P., Li, W., Ju, Z. F. & Zhang, J. (2007). Inorg. Chem. Commun.10, 265–268.
  • Kortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). Chem. Eur. J.9, 2945–2952.
  • Li, H., Eddaoudi, M. O., Keffe, M. & Yaghi, O. M. (1996). Nature (London), 402, 276–279.
  • Liu, B., Li, X. M., Li, C. B., Gao, G. G. & Che, G. B. (2007). Chin. J. Struct. Chem.26, 679–682.
  • Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y. T., Tang, G. M., Wu, Y., Qin, X. Y. & Qin, D. W. (2007). J. Mol. Struct.831, 61–68.
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography