PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2496.
Published online 2009 September 19. doi:  10.1107/S160053680903709X
PMCID: PMC2970269

N′-[(E)-(4-Bromo-2-thienyl)methyl­ene]isonicotinohydrazide

Abstract

In title compound, C11H8BrN3OS, the dihedral angle between the two aromatic rings is 27.61 (14)° and the Br atom is disordered over two sites with an occupancy ratio of 0.804 (2):0.196 (2). In the crystal, the mol­ecules are linked by N—H(...)O, C—H(...)O and C—H(...)N inter­actions, resulting in chains.

Related literature

For related structures, see: Jing et al. (2007 [triangle]); Shafiq et al. (2009 [triangle]); Wang et al. (2007 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2496-scheme1.jpg

Experimental

Crystal data

  • C11H8BrN3OS
  • M r = 310.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2496-efi1.jpg
  • a = 14.3507 (6) Å
  • b = 48.732 (2) Å
  • c = 7.2115 (3) Å
  • V = 5043.3 (4) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 3.41 mm−1
  • T = 296 K
  • 0.26 × 0.14 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.567, T max = 0.666
  • 12209 measured reflections
  • 2837 independent reflections
  • 1954 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.113
  • S = 1.04
  • 2837 reflections
  • 158 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.48 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1205 Friedal Pairs
  • Flack parameter: −0.002 (13)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903709X/hb5101sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903709X/hb5101Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AH greatfully acknowledges the the Higher Education Commission, Islamabad, Pakistan, for providing him with a scholarship under the Indigenous PhD Program (PIN 063–121531-PS3–127).

supplementary crystallographic information

Comment

In continuation of synthesizing various derivatives of 4-bromothiophene-2-carbaldehyde (Shafiq et al., 2009), the title compound (I, Fig. 1), has been prepared. The metal complexes of (I) have been prepared and the biological studies of all the compounds are in progress.

The crystal structure of (II) N'-((thiophen-3-yl)methylene)isonicotinohydrazide (Jing et al., 2007) and (III) (E)-N'-((5-methylthiophen-2-yl)methylene)isonicotinohydrazide (Wang et al., 2007) have been published. The title compound (I) differs from both due to substitution moiety of bromo.

We have recently reported the crystal structure of (IV) N'-[(E)-(4-bromothiophen-2-yl)methylidene]benzohydrazide (Shafiq et al., 2009). Due to change of benzene ring (IV) with the pyridine (I) ring, the crystal structure has been substantially changed. The title compound crystalizes with single molecule, whereas in (IV) there are two molecules along with fractional quantity of water. In (I), the dihedral angle between two aromatic rings A (C1—C3/N1/C4/C5) and B (C8—C11/S1) is 27.61 (14)°. The molecules of present compound are stabilized in the form of polymeric chains extending along the diagonal of crystallographic ac-plane. The list of strong H-bondings is given in Table 1. Due to the heterocyclic rings, the Br-Atom is disordered over two sites with occupancy ratio of 0.804:0.196. There exist R21(6) ring motif (Bernstein et al., 1995) due to intermolecular H-bonding of type C—H···O and N—H···O (Fig. 2).

Experimental

To a hot stirred solution of isoniazid (1.37 g, 0.01 mol) in ethanol (15 ml) was added 4-bromothiophene-2-carbaldehyde (1.91 g, 0.01 mol). The resultant mixture was then heated under reflux. After an hour precipitates were formed. The reaction mixture was further heated about 30 min for the completion of the reaction which was monitored through TLC. Then it was allowed to cool to room temperature, filtered and washed with hot ethanol. The crude material was recrystallized in (1:3 v/v) 1,4-dioxan:ethanol, to afford light yellow needles of (I).

Refinement

A large Fourier difference peak close to the Br-atom and higher values of its thermal parameters indicated the presence of disorder. The two parts of Br-atom were refined with equal ainisotropic displacement parameters (EADP). All other efforts like DFIX were utilized but the C10—Br1B bond could not be shortened.

The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 Å for aromatic like H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
Fig. 2.
The partial packing of (I) which shows that molecules form polymeric chains with ring motifs due to H-bondings.

Crystal data

C11H8BrN3OSF(000) = 2464
Mr = 310.17Dx = 1.634 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2837 reflections
a = 14.3507 (6) Åθ = 3.0–27.9°
b = 48.732 (2) ŵ = 3.41 mm1
c = 7.2115 (3) ÅT = 296 K
V = 5043.3 (4) Å3Cut needle, light yellow
Z = 160.26 × 0.14 × 0.12 mm

Data collection

Bruker Kappa APEXII CCD diffractometer2837 independent reflections
Radiation source: fine-focus sealed tube1954 reflections with I > 2σ(I)
graphiteRint = 0.035
Detector resolution: 7.50 pixels mm-1θmax = 27.9°, θmin = 3.0°
ω scansh = −18→18
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −64→63
Tmin = 0.567, Tmax = 0.666l = −9→9
12209 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.113w = 1/[σ2(Fo2) + (0.0415P)2 + 9.3783P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2837 reflectionsΔρmax = 0.56 e Å3
158 parametersΔρmin = −0.48 e Å3
2 restraintsAbsolute structure: Flack (1983), 1205 Friedal Pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.002 (13)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br1A0.42406 (6)0.25903 (2)−0.16312 (17)0.0946 (5)0.804 (2)
Br1B0.4270 (3)0.26462 (9)−0.0262 (10)0.0946 (5)0.196 (2)
S10.44553 (8)0.17467 (2)0.0252 (2)0.0549 (4)
O10.27773 (19)0.09307 (6)0.2899 (5)0.0505 (10)
N1−0.0545 (3)0.06098 (14)0.3270 (10)0.099 (3)
N20.1935 (2)0.12740 (7)0.1634 (5)0.0406 (11)
N30.2717 (2)0.14261 (7)0.1259 (5)0.0424 (11)
C10.1129 (3)0.08803 (8)0.2787 (6)0.0418 (14)
C20.0333 (3)0.10184 (10)0.3343 (7)0.0527 (16)
C3−0.0467 (3)0.08712 (15)0.3572 (10)0.080 (3)
C40.0234 (5)0.04764 (13)0.2750 (10)0.092 (3)
C50.1084 (4)0.06041 (10)0.2517 (8)0.0620 (19)
C60.2039 (3)0.10290 (8)0.2448 (6)0.0382 (14)
C70.2561 (3)0.16678 (9)0.0670 (7)0.0460 (16)
C80.3315 (3)0.18499 (9)0.0213 (7)0.0470 (14)
C90.3246 (3)0.21142 (11)−0.0287 (9)0.068 (2)
C100.4113 (3)0.22347 (9)−0.0687 (9)0.0643 (19)
C110.4832 (3)0.20625 (11)−0.0432 (9)0.0653 (18)
H20.139030.133460.135200.0485*
H2A0.034420.120660.355480.0632*
H3−0.099350.096500.397330.0962*
H40.019700.028850.253760.1106*
H50.161100.050440.218470.0746*
H70.195000.172780.053270.0554*
H90.268310.22080−0.036120.0813*
H110.545380.21094−0.060450.0783*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br1A0.0709 (4)0.0603 (5)0.1526 (14)−0.0081 (3)0.0142 (7)0.0410 (7)
Br1B0.0709 (4)0.0603 (5)0.1526 (14)−0.0081 (3)0.0142 (7)0.0410 (7)
S10.0358 (5)0.0516 (7)0.0773 (9)0.0035 (5)−0.0020 (6)0.0081 (6)
O10.0291 (14)0.0495 (17)0.073 (2)0.0004 (12)−0.0118 (16)0.0034 (17)
N10.056 (3)0.111 (5)0.130 (5)−0.041 (3)−0.031 (3)0.053 (4)
N20.0250 (16)0.0437 (19)0.053 (2)−0.0055 (14)−0.0080 (15)0.0056 (16)
N30.0281 (16)0.049 (2)0.050 (2)−0.0061 (15)−0.0043 (15)0.0029 (16)
C10.0315 (19)0.048 (2)0.046 (3)−0.0076 (17)−0.0167 (19)0.007 (2)
C20.037 (2)0.062 (3)0.059 (3)0.0025 (19)−0.002 (2)0.022 (2)
C30.039 (3)0.108 (5)0.094 (5)−0.011 (3)−0.012 (3)0.042 (4)
C40.091 (5)0.068 (4)0.118 (6)−0.032 (3)−0.041 (4)0.030 (4)
C50.062 (3)0.046 (3)0.078 (4)−0.007 (2)−0.026 (3)0.012 (3)
C60.0276 (19)0.043 (2)0.044 (3)−0.0029 (16)−0.0040 (17)−0.0027 (19)
C70.029 (2)0.056 (3)0.053 (3)−0.0051 (18)−0.0089 (19)0.011 (2)
C80.034 (2)0.049 (2)0.058 (3)0.0006 (17)−0.008 (2)0.006 (2)
C90.039 (2)0.057 (3)0.107 (5)0.002 (2)−0.008 (3)0.026 (3)
C100.045 (3)0.046 (3)0.102 (4)−0.007 (2)−0.001 (3)0.017 (3)
C110.035 (2)0.063 (3)0.098 (4)−0.003 (2)0.000 (3)0.015 (3)

Geometric parameters (Å, °)

Br1A—C101.871 (5)C2—C31.364 (7)
Br1B—C102.041 (6)C4—C51.380 (9)
S1—C81.712 (4)C7—C81.438 (6)
S1—C111.704 (5)C8—C91.341 (7)
O1—C61.207 (5)C9—C101.406 (6)
N1—C31.297 (10)C10—C111.343 (6)
N1—C41.347 (9)C2—H2A0.9300
N2—N31.372 (4)C3—H30.9300
N2—C61.339 (5)C4—H40.9300
N3—C71.272 (6)C5—H50.9300
N2—H20.8600C7—H70.9300
C1—C21.385 (6)C9—H90.9300
C1—C51.362 (6)C11—H110.9300
C1—C61.513 (6)
C8—S1—C1191.9 (2)Br1A—C10—C11123.6 (4)
C3—N1—C4116.7 (5)Br1B—C10—C9118.5 (4)
N3—N2—C6118.5 (3)C9—C10—C11113.0 (4)
N2—N3—C7115.0 (3)Br1B—C10—C11120.6 (4)
C6—N2—H2121.00Br1A—C10—C9123.3 (4)
N3—N2—H2121.00S1—C11—C10111.1 (3)
C2—C1—C6121.7 (4)C1—C2—H2A121.00
C5—C1—C6119.4 (4)C3—C2—H2A121.00
C2—C1—C5118.9 (4)N1—C3—H3118.00
C1—C2—C3118.3 (5)C2—C3—H3118.00
N1—C3—C2124.7 (5)N1—C4—H4118.00
N1—C4—C5123.4 (6)C5—C4—H4118.00
C1—C5—C4118.1 (5)C1—C5—H5121.00
N2—C6—C1113.7 (3)C4—C5—H5121.00
O1—C6—C1121.6 (4)N3—C7—H7120.00
O1—C6—N2124.7 (4)C8—C7—H7119.00
N3—C7—C8121.0 (4)C8—C9—H9123.00
C7—C8—C9126.8 (4)C10—C9—H9123.00
S1—C8—C7122.3 (3)S1—C11—H11124.00
S1—C8—C9110.9 (3)C10—C11—H11124.00
C8—C9—C10113.0 (4)
C11—S1—C8—C7179.5 (5)C2—C1—C6—N2−38.5 (6)
C11—S1—C8—C9−0.5 (5)C5—C1—C6—O1−39.9 (7)
C8—S1—C11—C10−0.5 (5)C5—C1—C6—N2140.6 (5)
C4—N1—C3—C22.2 (11)C1—C2—C3—N1−1.5 (10)
C3—N1—C4—C5−0.6 (11)N1—C4—C5—C1−1.6 (10)
C6—N2—N3—C7−172.8 (4)N3—C7—C8—S15.3 (7)
N3—N2—C6—O10.6 (6)N3—C7—C8—C9−174.7 (5)
N3—N2—C6—C1−179.9 (3)S1—C8—C9—C101.4 (7)
N2—N3—C7—C8−179.7 (4)C7—C8—C9—C10−178.6 (5)
C5—C1—C2—C3−0.9 (8)C8—C9—C10—Br1A174.2 (4)
C6—C1—C2—C3178.3 (5)C8—C9—C10—C11−1.9 (8)
C2—C1—C5—C42.2 (8)Br1A—C10—C11—S1−174.6 (3)
C6—C1—C5—C4−176.9 (5)C9—C10—C11—S11.4 (7)
C2—C1—C6—O1141.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.082.920 (4)165
C7—H7···O1i0.932.523.318 (5)144
C11—H11···N1ii0.932.603.277 (7)130

Symmetry codes: (i) x−1/4, −y+1/4, z−1/4; (ii) x+3/4, −y+1/4, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5101).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4029.
  • Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, C.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o4825.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography