PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2369–o2370.
Published online 2009 September 9. doi:  10.1107/S1600536809035399
PMCID: PMC2970268

2,9,16,19,22,25-Hexaoxatetra­cyclo­[24.4.0.24,7.010,15]dotriaconta-1(26),4,6,10(15),11,13,27,29,31-nona­ene

Abstract

The title 22-crown-6 unit, C26H28O6, comprising of three benzo groups and triethyl­ene glycol, was prepared by the reaction of α,α′-dibromo-p-xylene with 1,8-bis­(2-hydroxy­phen­oxy)-3,6-dioxaoctane in the presence of Cs2CO3 with tetra­hydro­furan (THF) and recrystallized from dichloro­methane–hexane (1:20 v/v) at room temperature. In the mol­ecular structure, two O atoms of the central ethyl­ene glycol in the triethyl­ene glycol unit exhibit exo conformations due to intra­molecular C—H(...)O inter­actions. A number of C—H(...)O and C—H(...)π inter­molecular inter­actions contribute to the stabilization of the crystal packing.

Related literature

For the preparation of related compounds, see: Sim et al. (2001 [triangle]); Weber & Vögtle (1976 [triangle]). For a related structure, see: Sim et al. (2001 [triangle]). For background to crown ether-based macrocyclic compounds and their inclusion behaviour, see: Gokel & Korzeniowski (1982 [triangle]); Izatt & Christensen (1981 [triangle]); Lindoy (1989 [triangle]); Pedersen (1967 [triangle]); Vögtle & Weber (1985 [triangle]); Weber et al. (1989 [triangle]); Wolf et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2369-scheme1.jpg

Experimental

Crystal data

  • C26H28O6
  • M r = 436.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2369-efi3.jpg
  • a = 12.348 (3) Å
  • b = 18.908 (4) Å
  • c = 9.824 (2) Å
  • β = 105.70 (3)°
  • V = 2208.0 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 4142 measured reflections
  • 3896 independent reflections
  • 2654 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.116
  • S = 1.02
  • 3896 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035399/jh2101sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035399/jh2101Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Konyang University Research Fund in 2009 and also by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–359-C00019).

supplementary crystallographic information

Comment

An extraordinary variety of crown ether-based macrocyclic compounds have been synthesized and reported since crown ether was first discovered (Pedersen, 1967) because their topological interesting as well as their inclusion behaviour (Gokel & Korzeniowski, 1982; Izatt & Christensen, 1981; Lindoy 1989; Vögtle & Weber, 1985; Weber et al. 1989). We have also synthesized and reported the preparation and the solid-state structure of new crown ether (I) bearing three aromatic subunits (Sim et al., 2001). As a part of our continuing interest in the development of new crown compounds, the preparation and crystal structure of new crown ether-based macrocyclic compound (II) containing three benzo units of which ring size is larger than that of the previous reported compound (I) are presented here.

The title compound (II), 2,9,16,19,22,25-hexaoxatetracyclo[24.4.24,7.0.010,15]-dotriaconta-1(26),4,6, 10 (15),11,13,27,29,31-nonaene was prepared by the reaction of α,α'-dibromo-p-xylene with 1,8-bis(2-hydroxyphenoxy)-3,6-dioxaoctane in the presence of Cs2CO3 with tetrahydrofuran (THF) and recrystallized from dichloromethane/hexane (1:20) at room temperature to give colorless single crystals suitable for X-ray analysis.

In the molecular structure of (II), the torsion angels of C—C—O—C connecting A-to-B rings and A-to-C rings aromatic are 167.0 (2)° and 163.4 (2)°, respectively, which indicate that the A ring is situated trans to both the B and C rings, with dihedral angles of 57.04 (8)° between A and B and 44.41 (8)° between A and C. The dihedral angle between B and C rings is 14.2 (1)°. The all O—C—C—O and C—C—O—C torsion angles except two C—C—O—C in the triethylene glycol group exhibit gauche conformation. Two exceptional C—C—O—C (C10—C9—O3—C8 and C9—C10—O4—C11) torsion angles are trans conformation with the values of -162.5 (2)° and -156.1 (2)°, respectively.

Interestingly, two oxygen atoms of the central ethylene glycol in the triethylene glycol unit exhibit the exo-orientations which are very different from those found in the ethylene glycol backbone of (I) (Sim et al., 2001) or common crown ether-based compounds. In general, oxygen atoms of ethylene glycol group in crown ether-based compounds favor endo-orientation (Wolf et al., 1987). The exo-orientations of two oxygen atoms (O3 and O4) in (II) may be due to the intramolecular C—H···O interactions; 2.62 Å for C9—H9A···O2 and 2.70 Å for C10—H10A···O6 (Fig. 1 & Table 1).

The crystal packing is stabilized by not only intermolecular C—H···O hydrogen bonds with C—H···O separation in the range of 2.71–2.90 Å but intermolecular C—H···π interactions with C—H···Cg separations in the range of 2.76–3.06 Å (Fig. 2 & Table 1; Cg is the centroid of aromatic ring).

Experimental

To a refluxing suspension of caesium carbonate (15.2 mmol) in THF under nitrogen was added dropwise a solution of α,α'-dibromo-p-xylene (3.75 mmol) and 1,8-bis(2-hydroxyphenoxy)-3,6-dioxaoctane (3.79 mmol) in THF over a period of 3 h. The mixture was then refluxed for an additional 24 h. After cooling to room temperature, 10% aqueous hydrochloric acid was added. The solvent was removed under reduced pressure and the residual mixture was extracted with dichloromethane. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and evaporated in vacuo. The crude product was chromatographed on a silica-gel column using a mixed solvent of ethyl acetate and n-hexane (1:1) as eluent, and recrystallized from dichloromethane/n-hexane (1:20, v/v) to give as a crystalline solid in 70% yield (m.p. 424 K). IR (KBr pellet): 2926, 1600, 1504, 1235, 1126, 996 and 735 cm-1. 1H NMR (CDCl3): δ 7.54 (d, 4H, Ar-H), 7.06–6.91 (m, 8H, Ar-H), 5.06 (s, 4H, ArCH2O), 4.12 (t, 4H, ArOCH2CH2OCH2), 3.88 (t, 4H, ArOCH2CH2OCH2) and 3.70 (t, 4H, ArOCH2CH2OCH2).

Refinement

(type here to add refinement details)

Figures

Fig. 1.
ORTEP drawing of (II) with the atom-numbering scheme and intramolecular C—H···O interactions (dotted lines). Displacement ellipsoids are drawn at the 50% probability level. All H atoms except two H atoms related to intramolecular ...
Fig. 2.
Intermolecular C—H···π (red dotted lines) and C—H···O (yellow dotted lines) interactions in the title compound. All H atoms except those related to intermolecular interactions have ...
Fig. 3.
The structures of (I) and (II).

Crystal data

C26H28O6F(000) = 928
Mr = 436.48Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3896 reflections
a = 12.348 (3) Åθ = 1.7–25.0°
b = 18.908 (4) ŵ = 0.09 mm1
c = 9.824 (2) ÅT = 293 K
β = 105.70 (3)°Plate, colorless
V = 2208.0 (8) Å30.25 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
graphiteθmax = 25.1°, θmin = 1.7°
ω scansh = −14→14
4142 measured reflectionsk = 0→22
3896 independent reflectionsl = −11→0

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0672P)2 + 0.0279P] where P = (Fo2 + 2Fc2)/3
3896 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.14749 (11)0.20218 (7)1.10961 (13)0.0498 (3)
O2−0.28741 (11)0.11040 (7)0.97137 (13)0.0520 (4)
O3−0.17603 (11)0.00949 (7)0.83350 (15)0.0568 (4)
O4−0.00678 (11)0.00265 (9)0.68633 (14)0.0624 (4)
O50.23169 (10)0.03178 (7)0.73303 (12)0.0474 (3)
O60.29941 (11)0.14286 (7)0.87761 (14)0.0552 (4)
C1−0.23684 (15)0.18893 (10)1.16215 (19)0.0446 (4)
C2−0.25554 (17)0.21956 (11)1.2812 (2)0.0538 (5)
H2−0.20570.25341.33130.065*
C3−0.34797 (19)0.20021 (12)1.3264 (2)0.0626 (6)
H3−0.35930.22041.40770.075*
C4−0.42279 (19)0.15159 (12)1.2525 (2)0.0639 (6)
H4−0.48540.13931.28280.077*
C5−0.40553 (17)0.12059 (11)1.1322 (2)0.0571 (5)
H5−0.45680.08761.08200.069*
C6−0.31315 (15)0.13823 (10)1.08660 (18)0.0449 (4)
C7−0.33649 (16)0.04425 (10)0.9193 (2)0.0509 (5)
H7A−0.41780.04850.88890.061*
H7B−0.31690.00880.99330.061*
C8−0.29280 (16)0.02303 (12)0.7974 (2)0.0557 (5)
H8A−0.3324−0.01920.75460.067*
H8B−0.30980.06030.72710.067*
C9−0.11025 (18)0.06755 (10)0.8132 (2)0.0567 (5)
H9A−0.10330.10140.88930.068*
H9B−0.14640.09100.72470.068*
C100.00358 (16)0.04204 (11)0.8106 (2)0.0532 (5)
H10A0.05330.08200.81290.064*
H10B0.03540.01270.89270.064*
C110.07916 (16)−0.04707 (10)0.6910 (2)0.0551 (5)
H11A0.0465−0.08820.63600.066*
H11B0.1099−0.06230.78810.066*
C120.17270 (15)−0.02012 (10)0.6366 (2)0.0480 (5)
H12A0.2229−0.05850.62920.058*
H12B0.14300.00060.54360.058*
C130.31566 (15)0.06729 (10)0.69757 (18)0.0426 (4)
C140.36356 (17)0.04880 (11)0.5914 (2)0.0541 (5)
H140.33910.00840.53800.065*
C150.44755 (18)0.08973 (12)0.5636 (2)0.0617 (6)
H150.47940.07680.49160.074*
C160.48412 (16)0.14911 (12)0.6415 (2)0.0588 (6)
H160.54050.17670.62230.071*
C170.43756 (16)0.16805 (11)0.7484 (2)0.0530 (5)
H170.46330.20830.80180.064*
C180.35325 (14)0.12816 (10)0.77722 (19)0.0427 (4)
C190.30700 (16)0.21254 (10)0.9329 (2)0.0521 (5)
H19A0.29750.24680.85710.063*
H19B0.38010.21990.99940.063*
C200.21604 (15)0.22107 (9)1.00562 (19)0.0457 (4)
C210.16951 (16)0.28661 (10)1.0145 (2)0.0501 (5)
H210.19680.32600.97770.060*
C220.08275 (17)0.29458 (10)1.0775 (2)0.0503 (5)
H220.05320.33941.08330.060*
C230.03947 (16)0.23753 (10)1.1316 (2)0.0492 (5)
C240.08909 (18)0.17237 (10)1.1269 (2)0.0565 (5)
H240.06340.13331.16640.068*
C250.17552 (17)0.16431 (10)1.0652 (2)0.0548 (5)
H250.20730.11981.06350.066*
C26−0.05795 (17)0.24454 (11)1.1932 (2)0.0574 (5)
H26A−0.03730.22841.29050.069*
H26B−0.08130.29361.19140.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0493 (7)0.0561 (8)0.0464 (7)−0.0046 (6)0.0169 (6)−0.0083 (6)
O20.0533 (8)0.0572 (8)0.0480 (7)−0.0055 (6)0.0178 (6)−0.0082 (6)
O30.0508 (8)0.0470 (8)0.0751 (9)0.0046 (6)0.0214 (7)0.0069 (7)
O40.0447 (7)0.0944 (11)0.0434 (7)0.0134 (8)0.0038 (6)−0.0129 (7)
O50.0492 (7)0.0495 (7)0.0453 (7)−0.0086 (6)0.0156 (6)−0.0089 (6)
O60.0656 (9)0.0480 (8)0.0600 (8)−0.0131 (7)0.0305 (7)−0.0144 (6)
C10.0464 (10)0.0450 (11)0.0425 (10)0.0107 (8)0.0121 (9)0.0034 (8)
C20.0593 (12)0.0511 (12)0.0526 (12)0.0106 (10)0.0179 (10)−0.0054 (9)
C30.0652 (13)0.0716 (14)0.0568 (13)0.0154 (12)0.0268 (11)−0.0045 (11)
C40.0554 (12)0.0785 (16)0.0661 (14)0.0117 (12)0.0305 (11)0.0083 (12)
C50.0474 (11)0.0663 (14)0.0587 (13)0.0043 (10)0.0163 (10)0.0020 (11)
C60.0449 (10)0.0507 (11)0.0406 (10)0.0109 (9)0.0139 (8)0.0031 (9)
C70.0446 (10)0.0529 (12)0.0528 (11)−0.0026 (9)0.0092 (9)−0.0038 (9)
C80.0479 (11)0.0608 (12)0.0550 (12)−0.0029 (10)0.0080 (9)−0.0118 (10)
C90.0617 (13)0.0452 (11)0.0686 (13)0.0005 (10)0.0269 (11)0.0013 (10)
C100.0517 (11)0.0608 (13)0.0468 (11)−0.0001 (10)0.0127 (9)−0.0047 (10)
C110.0494 (11)0.0522 (12)0.0626 (12)−0.0069 (10)0.0129 (10)−0.0170 (10)
C120.0466 (11)0.0488 (11)0.0455 (10)0.0017 (9)0.0070 (9)−0.0105 (9)
C130.0396 (10)0.0469 (11)0.0412 (10)0.0054 (8)0.0107 (8)0.0063 (8)
C140.0577 (12)0.0583 (12)0.0500 (11)0.0051 (10)0.0209 (10)−0.0012 (10)
C150.0609 (13)0.0730 (15)0.0609 (13)0.0107 (12)0.0328 (11)0.0073 (12)
C160.0469 (11)0.0640 (14)0.0714 (14)0.0053 (10)0.0261 (11)0.0164 (12)
C170.0442 (10)0.0521 (11)0.0617 (13)−0.0023 (9)0.0130 (10)0.0027 (10)
C180.0406 (10)0.0445 (10)0.0440 (10)0.0028 (8)0.0133 (8)0.0031 (8)
C190.0529 (12)0.0452 (11)0.0591 (12)−0.0097 (9)0.0168 (10)−0.0106 (9)
C200.0462 (10)0.0429 (10)0.0452 (10)−0.0079 (8)0.0073 (9)−0.0096 (8)
C210.0584 (12)0.0397 (10)0.0499 (11)−0.0091 (9)0.0106 (9)−0.0050 (9)
C220.0595 (12)0.0394 (10)0.0496 (11)−0.0002 (9)0.0106 (10)−0.0082 (9)
C230.0516 (11)0.0464 (11)0.0488 (11)−0.0063 (9)0.0121 (9)−0.0148 (9)
C240.0676 (13)0.0405 (11)0.0681 (14)−0.0068 (10)0.0296 (11)−0.0043 (10)
C250.0629 (13)0.0379 (11)0.0679 (13)0.0010 (9)0.0250 (11)−0.0031 (9)
C260.0605 (13)0.0522 (12)0.0618 (13)−0.0069 (10)0.0205 (11)−0.0191 (10)

Geometric parameters (Å, °)

O1—C11.362 (2)C11—C121.488 (3)
O1—C261.431 (2)C11—H11A0.9700
O2—C61.362 (2)C11—H11B0.9700
O2—C71.423 (2)C12—H12A0.9700
O3—C91.412 (2)C12—H12B0.9700
O3—C81.412 (2)C13—C141.376 (3)
O4—C101.406 (2)C13—C181.398 (3)
O4—C111.409 (2)C14—C151.379 (3)
O5—C131.357 (2)C14—H140.9300
O5—C121.420 (2)C15—C161.365 (3)
O6—C181.359 (2)C15—H150.9300
O6—C191.418 (2)C16—C171.374 (3)
C1—C21.380 (3)C16—H160.9300
C1—C61.407 (3)C17—C181.376 (3)
C2—C31.381 (3)C17—H170.9300
C2—H20.9300C19—C201.494 (3)
C3—C41.365 (3)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C4—C51.386 (3)C20—C211.379 (3)
C4—H40.9300C20—C251.380 (3)
C5—C61.375 (3)C21—C221.383 (3)
C5—H50.9300C21—H210.9300
C7—C81.495 (3)C22—C231.373 (3)
C7—H7A0.9700C22—H220.9300
C7—H7B0.9700C23—C241.382 (3)
C8—H8A0.9700C23—C261.491 (3)
C8—H8B0.9700C24—C251.371 (3)
C9—C101.493 (3)C24—H240.9300
C9—H9A0.9700C25—H250.9300
C9—H9B0.9700C26—H26A0.9700
C10—H10A0.9700C26—H26B0.9700
C10—H10B0.9700
C1—O1—C26117.71 (14)O5—C12—C11107.74 (14)
C6—O2—C7117.76 (14)O5—C12—H12A110.2
C9—O3—C8114.27 (16)C11—C12—H12A110.2
C10—O4—C11115.74 (15)O5—C12—H12B110.2
C13—O5—C12117.39 (13)C11—C12—H12B110.2
C18—O6—C19118.25 (14)H12A—C12—H12B108.5
O1—C1—C2125.65 (18)O5—C13—C14125.71 (17)
O1—C1—C6114.90 (15)O5—C13—C18115.11 (15)
C2—C1—C6119.44 (18)C14—C13—C18119.17 (17)
C1—C2—C3120.2 (2)C13—C14—C15120.5 (2)
C1—C2—H2119.9C13—C14—H14119.7
C3—C2—H2119.9C15—C14—H14119.7
C4—C3—C2120.5 (2)C16—C15—C14120.18 (19)
C4—C3—H3119.8C16—C15—H15119.9
C2—C3—H3119.8C14—C15—H15119.9
C3—C4—C5120.0 (2)C15—C16—C17119.98 (19)
C3—C4—H4120.0C15—C16—H16120.0
C5—C4—H4120.0C17—C16—H16120.0
C6—C5—C4120.5 (2)C16—C17—C18120.7 (2)
C6—C5—H5119.7C16—C17—H17119.6
C4—C5—H5119.7C18—C17—H17119.6
O2—C6—C5125.33 (18)O6—C18—C17125.69 (17)
O2—C6—C1115.35 (16)O6—C18—C13114.89 (15)
C5—C6—C1119.32 (17)C17—C18—C13119.41 (17)
O2—C7—C8108.22 (16)O6—C19—C20107.65 (15)
O2—C7—H7A110.1O6—C19—H19A110.2
C8—C7—H7A110.1C20—C19—H19A110.2
O2—C7—H7B110.1O6—C19—H19B110.2
C8—C7—H7B110.1C20—C19—H19B110.2
H7A—C7—H7B108.4H19A—C19—H19B108.5
O3—C8—C7114.40 (16)C21—C20—C25117.85 (18)
O3—C8—H8A108.7C21—C20—C19120.50 (17)
C7—C8—H8A108.7C25—C20—C19121.65 (17)
O3—C8—H8B108.7C20—C21—C22120.86 (18)
C7—C8—H8B108.7C20—C21—H21119.6
H8A—C8—H8B107.6C22—C21—H21119.6
O3—C9—C10109.36 (16)C23—C22—C21121.17 (18)
O3—C9—H9A109.8C23—C22—H22119.4
C10—C9—H9A109.8C21—C22—H22119.4
O3—C9—H9B109.8C22—C23—C24117.69 (18)
C10—C9—H9B109.8C22—C23—C26121.89 (18)
H9A—C9—H9B108.2C24—C23—C26120.41 (18)
O4—C10—C9108.74 (17)C25—C24—C23121.26 (19)
O4—C10—H10A109.9C25—C24—H24119.4
C9—C10—H10A109.9C23—C24—H24119.4
O4—C10—H10B109.9C24—C25—C20121.07 (19)
C9—C10—H10B109.9C24—C25—H25119.5
H10A—C10—H10B108.3C20—C25—H25119.5
O4—C11—C12114.25 (17)O1—C26—C23107.49 (15)
O4—C11—H11A108.7O1—C26—H26A110.2
C12—C11—H11A108.7C23—C26—H26A110.2
O4—C11—H11B108.7O1—C26—H26B110.2
C12—C11—H11B108.7C23—C26—H26B110.2
H11A—C11—H11B107.6H26A—C26—H26B108.5
C26—O1—C1—C28.2 (3)C13—C14—C15—C160.1 (3)
C26—O1—C1—C6−170.39 (16)C14—C15—C16—C170.3 (3)
O1—C1—C2—C3−178.12 (17)C15—C16—C17—C18−0.7 (3)
C6—C1—C2—C30.5 (3)C19—O6—C18—C1717.7 (3)
C1—C2—C3—C4−1.2 (3)C19—O6—C18—C13−161.32 (17)
C2—C3—C4—C50.8 (3)C16—C17—C18—O6−178.25 (18)
C3—C4—C5—C60.2 (3)C16—C17—C18—C130.7 (3)
C7—O2—C6—C5−20.6 (3)O5—C13—C18—O6−0.4 (2)
C7—O2—C6—C1159.34 (16)C14—C13—C18—O6178.72 (16)
C4—C5—C6—O2179.09 (18)O5—C13—C18—C17−179.49 (16)
C4—C5—C6—C1−0.9 (3)C14—C13—C18—C17−0.3 (3)
O1—C1—C6—O2−0.7 (2)C18—O6—C19—C20163.38 (15)
C2—C1—C6—O2−179.42 (16)O6—C19—C20—C21−151.26 (17)
O1—C1—C6—C5179.28 (16)O6—C19—C20—C2528.5 (2)
C2—C1—C6—C50.5 (3)C25—C20—C21—C22−1.9 (3)
C6—O2—C7—C8−177.71 (15)C19—C20—C21—C22177.84 (17)
C9—O3—C8—C7−95.6 (2)C20—C21—C22—C23−0.7 (3)
O2—C7—C8—O364.9 (2)C21—C22—C23—C243.0 (3)
C8—O3—C9—C10−162.52 (16)C21—C22—C23—C26−176.78 (18)
C11—O4—C10—C9−156.07 (16)C22—C23—C24—C25−2.6 (3)
O3—C9—C10—O469.2 (2)C26—C23—C24—C25177.11 (19)
C10—O4—C11—C12−93.9 (2)C23—C24—C25—C200.0 (3)
C13—O5—C12—C11−175.06 (15)C21—C20—C25—C242.2 (3)
O4—C11—C12—O568.5 (2)C19—C20—C25—C24−177.50 (19)
C12—O5—C13—C14−13.4 (3)C1—O1—C26—C23166.99 (15)
C12—O5—C13—C18165.73 (15)C22—C23—C26—O1118.0 (2)
O5—C13—C14—C15179.01 (17)C24—C23—C26—O1−61.7 (2)
C18—C13—C14—C15−0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O20.972.623.114 (2)112
C10—H10A···O50.972.703.117 (2)106
C2—H2···O1i0.932.763.471 (2)134
C7—H7B···O5ii0.972.723.607 (2)153
C11—H11B···O1ii0.972.823.501 (3)128
C11—H11B···O2ii0.972.903.798 (3)154
C12—H12B···O4iii0.972.423.294 (3)149
C25—H25···O3ii0.932.713.433 (2)135
C12—H12A···Cg1ii0.972.763.47138
C21—H21···Cg2i0.932.973.47115
C26—H26A···Cg3i0.973.063.83138

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y, −z+2; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2101).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gokel, G. W. & Korzeniowski, S. H. (1982). In Macrocyclic Polyether Syntheses Berlin/Heidelberg/New York: Springer-Verlag.
  • Izatt, R. M. & Christensen, J. J. (1981). In Progress in Macrocyclic Chemistry, Vol. 2. New York: John Wiley and Sons.
  • Lindoy, L. F. (1989). In The Chemistry of Macrocyclic Ligand Complexes Cambridge University Press.
  • Pedersen, C. J. (1967). J. Am. Chem. Soc.89, 2495–2496.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sim, W., Lee, J. Y., Kim, J. S., Kim, M.-J., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. E57, o416–o418.
  • Vögtle, F. & Weber, E. (1985). In Host Guest Complex Chemistry Macrocycles Berlin/Heidelberg/New York: Springer-Verlag.
  • Weber, E., Toner, J. L., Goldberg, S., Vögtle, F., Laidler, D. A., Stoddart, J. F., Bartsch, R. A. & Liotta, C. L. (1989). In Crown Ethers and Analogs New York: John Wiley and Sons.
  • Weber, E. & Vögtle, F. (1976). Chem. Ber 109, 1803–1831.
  • Wolf, R. E. Jr, Hartman, J. R., Storey, J. M. E., Foxman, B. M. & Cooper, S. R. (1987). J. Am. Chem. Soc.109, 4328–4335.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography