PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2336.
Published online 2009 September 5. doi:  10.1107/S1600536809034552
PMCID: PMC2970266

(E)-N′-(3,4-Dichloro­benzyl­idene)nicotino­hydrazide monohydrate

Abstract

In the title compound, C13H9Cl2N3O·H2O, the 3,4-dichloro­benzene ring is nearly coplanar with the pyridine ring, making a dihedral angle of 4.78 (8)°. Inter­molecular O—H(...)O, O—H(...)N, N—H(...)O and weak C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2336-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2N3O·H2O
  • M r = 312.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2336-efi1.jpg
  • a = 8.2080 (3) Å
  • b = 12.3294 (4) Å
  • c = 13.7089 (4) Å
  • β = 91.522 (2)°
  • V = 1386.85 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 296 K
  • 0.40 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.893, T max = 0.954
  • 20965 measured reflections
  • 3032 independent reflections
  • 2150 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.100
  • S = 1.02
  • 3032 reflections
  • 189 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034552/xu2600sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034552/xu2600Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the coordination chemistry of Schiff bases, we have synthesized the title compound and report here its crystal structure.

The title molecule crystallizes in the E conformation (Fig. 1), with the N2—N1—C7—C6 torsion angle of 179.81 (15)°. The molecule structure is nearly planar, the dihedral angle between the 3,4-dichlorobenzene ring and the pyridine ring is 4.78 (8)°. The extensive intermolecular classic O—H···O, O—H···N, N—H···O and weak C—H···O hydrogen bonding is present in the crystal structure (Table 1 and Fig. 2).

Experimental

Nicotinohydrazide (1 mmol, 0.137 g) was dissolved in ethanol (15 ml). The solution was stirred for several minitutes at 351 K, then the 3,4-dichlorobenzaldehyde (1 mmol, 0.175 g) in ethanol (8 ml) was added dropwise, and the mixture was stirred at refluxing temperature for 2 h. The solid product was isolated and recrystallized from methanol-water solution. Colourless single crystals were obtained after 3 d.

Refinement

H atoms of water molecule are located in a difference Fourier map and refined isotropically, with O—H and H···H distances restrained to 0.85 (2) and 1.37 (2) Å. Other H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic) and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The unit cell packing diagram showing the intermolecular hydrogen bonding as dashed lines.

Crystal data

C13H9Cl2N3O·H2OF(000) = 640
Mr = 312.15Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3887 reflections
a = 8.2080 (3) Åθ = 2.5–27.0°
b = 12.3294 (4) ŵ = 0.47 mm1
c = 13.7089 (4) ÅT = 296 K
β = 91.522 (2)°Block, colourless
V = 1386.85 (8) Å30.40 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3032 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −10→10
Tmin = 0.893, Tmax = 0.954k = −15→15
20965 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3048P] where P = (Fo2 + 2Fc2)/3
3032 reflections(Δ/σ)max = 0.022
189 parametersΔρmax = 0.15 e Å3
3 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.01836 (7)0.35397 (5)0.67808 (4)0.07194 (19)
Cl20.02126 (7)0.10476 (5)0.62576 (4)0.0725 (2)
N20.46330 (18)0.25736 (12)0.18259 (10)0.0462 (4)
H2A0.46940.18920.16980.055*
N10.38507 (18)0.29373 (12)0.26366 (10)0.0471 (4)
O0.52773 (19)0.42935 (10)0.14108 (9)0.0657 (4)
C60.2369 (2)0.25413 (14)0.40566 (13)0.0448 (4)
C80.5303 (2)0.33162 (14)0.12366 (12)0.0457 (4)
C40.0960 (2)0.20492 (15)0.55082 (13)0.0482 (4)
C30.0803 (2)0.31321 (16)0.57470 (13)0.0487 (4)
C100.6343 (2)0.18316 (14)0.01178 (13)0.0501 (4)
H10A0.59920.13140.05590.060*
C20.1439 (2)0.39176 (15)0.51490 (14)0.0527 (5)
H20.13440.46460.53150.063*
C90.6100 (2)0.29128 (13)0.03370 (12)0.0420 (4)
C130.6619 (2)0.36685 (15)−0.03277 (13)0.0519 (5)
H13A0.64630.4404−0.02140.062*
C50.1740 (2)0.17586 (15)0.46627 (13)0.0483 (4)
H5A0.18410.10290.45010.058*
C70.3221 (2)0.22160 (15)0.31757 (13)0.0480 (4)
H7A0.33010.14870.30110.058*
C10.2212 (2)0.36294 (14)0.43093 (14)0.0508 (5)
H10.26320.41640.39090.061*
O10.5421 (2)0.52708 (11)0.32595 (11)0.0651 (4)
N30.7054 (2)0.14870 (12)−0.06903 (11)0.0564 (4)
C110.7563 (2)0.22393 (16)−0.13096 (14)0.0558 (5)
H11A0.80770.2014−0.18710.067*
C120.7366 (3)0.33289 (16)−0.11592 (14)0.0575 (5)
H12A0.77310.3830−0.16110.069*
H1B0.599 (3)0.4849 (16)0.3622 (14)0.092 (9)*
H1A0.515 (3)0.4919 (18)0.2749 (11)0.102 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0761 (4)0.0845 (4)0.0562 (3)0.0074 (3)0.0190 (3)−0.0066 (3)
Cl20.0856 (4)0.0646 (3)0.0679 (3)−0.0098 (3)0.0148 (3)0.0166 (3)
N20.0585 (9)0.0371 (7)0.0434 (8)0.0010 (7)0.0081 (7)−0.0042 (6)
N10.0519 (9)0.0439 (8)0.0458 (8)0.0025 (7)0.0058 (6)−0.0041 (7)
O0.1088 (12)0.0353 (7)0.0541 (8)0.0024 (7)0.0196 (7)−0.0034 (6)
C60.0423 (10)0.0429 (9)0.0492 (9)−0.0002 (8)0.0026 (7)−0.0017 (8)
C80.0558 (11)0.0386 (9)0.0427 (9)0.0027 (8)0.0004 (8)−0.0014 (7)
C40.0463 (11)0.0494 (10)0.0490 (10)−0.0031 (8)0.0013 (8)0.0069 (8)
C30.0436 (10)0.0562 (11)0.0466 (10)0.0029 (9)0.0052 (8)−0.0032 (8)
C100.0666 (12)0.0379 (9)0.0461 (10)0.0021 (9)0.0079 (8)0.0030 (8)
C20.0546 (12)0.0435 (10)0.0603 (11)0.0024 (9)0.0084 (9)−0.0050 (9)
C90.0466 (10)0.0379 (9)0.0414 (9)−0.0006 (8)−0.0016 (7)−0.0014 (7)
C130.0654 (12)0.0379 (9)0.0527 (10)−0.0046 (8)0.0061 (9)−0.0011 (8)
C50.0502 (11)0.0411 (9)0.0535 (10)−0.0017 (8)0.0018 (8)−0.0016 (8)
C70.0508 (11)0.0424 (10)0.0509 (10)−0.0001 (8)0.0040 (8)−0.0050 (8)
C10.0528 (11)0.0413 (10)0.0590 (11)−0.0007 (8)0.0119 (9)0.0013 (8)
O10.1057 (13)0.0364 (7)0.0533 (8)0.0038 (8)0.0052 (8)−0.0022 (7)
N30.0752 (11)0.0435 (9)0.0512 (9)0.0039 (8)0.0131 (8)−0.0031 (7)
C110.0632 (13)0.0558 (12)0.0490 (10)−0.0018 (10)0.0123 (9)−0.0050 (9)
C120.0703 (13)0.0488 (11)0.0541 (11)−0.0098 (10)0.0163 (10)0.0021 (9)

Geometric parameters (Å, °)

Cl1—C31.7255 (18)C10—H10A0.9300
Cl2—C41.7291 (18)C2—C11.376 (2)
N2—C81.348 (2)C2—H20.9300
N2—N11.3736 (19)C9—C131.378 (2)
N2—H2A0.8600C13—C121.374 (3)
N1—C71.275 (2)C13—H13A0.9300
O—C81.229 (2)C5—H5A0.9300
C6—C51.383 (2)C7—H7A0.9300
C6—C11.392 (2)C1—H10.9300
C6—C71.467 (2)O1—H1B0.85 (2)
C8—C91.497 (2)O1—H1A0.85 (2)
C4—C31.381 (3)N3—C111.332 (2)
C4—C51.386 (2)C11—C121.369 (3)
C3—C21.380 (3)C11—H11A0.9300
C10—N31.335 (2)C12—H12A0.9300
C10—C91.382 (2)
C8—N2—N1118.04 (14)C13—C9—C8118.00 (15)
C8—N2—H2A121.0C10—C9—C8124.65 (15)
N1—N2—H2A121.0C12—C13—C9119.66 (17)
C7—N1—N2116.54 (15)C12—C13—H13A120.2
C5—C6—C1118.97 (17)C9—C13—H13A120.2
C5—C6—C7119.85 (16)C6—C5—C4120.70 (17)
C1—C6—C7121.15 (16)C6—C5—H5A119.7
O—C8—N2122.71 (16)C4—C5—H5A119.7
O—C8—C9119.75 (16)N1—C7—C6119.73 (16)
N2—C8—C9117.54 (15)N1—C7—H7A120.1
C3—C4—C5119.74 (16)C6—C7—H7A120.1
C3—C4—Cl2120.84 (14)C2—C1—C6120.31 (17)
C5—C4—Cl2119.42 (14)C2—C1—H1119.8
C4—C3—C2119.88 (16)C6—C1—H1119.8
C4—C3—Cl1121.65 (14)H1B—O1—H1A107.2 (18)
C2—C3—Cl1118.47 (15)C11—N3—C10117.30 (16)
N3—C10—C9123.78 (17)N3—C11—C12123.14 (17)
N3—C10—H10A118.1N3—C11—H11A118.4
C9—C10—H10A118.1C12—C11—H11A118.4
C1—C2—C3120.39 (17)C11—C12—C13118.75 (18)
C1—C2—H2119.8C11—C12—H12A120.6
C3—C2—H2119.8C13—C12—H12A120.6
C13—C9—C10117.35 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O0.85 (2)2.00 (2)2.8059 (19)160 (2)
O1—H1B···N3i0.85 (2)2.08 (1)2.909 (2)166 (2)
N2—H2A···O1ii0.862.002.842 (2)165
C7—H7A···O1ii0.932.553.314 (2)140
C10—H10A···O1ii0.932.393.304 (2)167

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2600).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography