PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1160.
Published online 2009 September 5. doi:  10.1107/S1600536809034369
PMCID: PMC2970265

Bis[5-(2-amino-3-pyrid­yl)tetra­zolato]copper(II)

Abstract

In the centrosymmetric title complex, [Cu(C6H5N6)2], the CuII ion is coordinated by four N atoms from two symmetry-related bidentate 5-(2-amino-3-pyrid­yl)tetra­zolate ligands in a slightly distorted square-planar environment. There are weak intra­molecular N—H(...)N hydrogen bonds between the two ligands. In the crystal structure, there are significant π–π stacking inter­actions between symmetry-related tetra­zole and pyridine rings, with a centroid–centroid distance of 3.6025 (18)°.

Related literature

For the coordination chemistry of tetra­zole compounds, see: Butler (1984 [triangle]); Zhao et al. (2008 [triangle]). For the in situ [2 + 3] cyclo­addition synthesis of tetra­zole coordination polymers, see: Xiong et al. (2002 [triangle]); Ye et al. (2006 [triangle]); Fu et al. (2008 [triangle]). For coordination polymers synthesized with similar organic ligand derivatives, see: Ye et al. (2005 [triangle]); Bhandari et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1160-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H5N6)2]
  • M r = 385.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1160-efi1.jpg
  • a = 6.6492 (6) Å
  • b = 7.9093 (7) Å
  • c = 13.5581 (12) Å
  • β = 100.692 (2)°
  • V = 700.65 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.59 mm−1
  • T = 294 K
  • 0.15 × 0.13 × 0.09 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.797, T max = 0.870
  • 3743 measured reflections
  • 1363 independent reflections
  • 1228 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.109
  • S = 1.07
  • 1363 reflections
  • 115 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond angles (°)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034369/lh2827sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034369/lh2827Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from SEU.

supplementary crystallographic information

Comment

In situ [2+3] cycloaddition synthesis of tetrazole coordination polymers under hydrothermal conditions has proved to be a fast and convenient route to explore novel coordination polymers with rich structural diversities and potential physical properties, such as second harmonic generation (SGH), ferroelectric and dielectric responses (Xiong et al., 2002; Ye et al., 2006; Fu et al. (2008). The crystal structure of the compound formed by our hydrothermal synthesis is reported herein.

The molecular structure of the title compound is shown in Fig. 1. The CuII ion lies on an inversion center coordinated by four N atoms from two symmetry related bidentate 3-(2-Amino-pyridyl))tetrazolato ligands in a slightly distorted square-planar environment. In the crystal structure, there are significant π–π stacking interactions between symmetry related tetrazole and pyridine rings with a centroid to centroid distance of 3.6025 (18)°.

Experimental

The title compound was prepared by hydrothermal treatment of 2-aminonicotinonitrile (2.3 mmol) and Cu(NO3)2 (1.0 mmol) with excess amount of NaN3 in a sealed Pyrex tuble at 403K for 2–4 days. The resulting green rectangular crystals gave a yield of 75% based on Cu(NO3)2.

Refinement

H atoms were placed in caculated positions with C-H = 0.93 and N-H = 0.90Å and refined using a riding-model approximation with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Symmetry code: (a) -x+1, -y+1, -z+1. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C6H5N6)2]F(000) = 390
Mr = 385.86Dx = 1.829 Mg m3
Monoclinic, P21/cMelting point: 723 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.6492 (6) ÅCell parameters from 2942 reflections
b = 7.9093 (7) Åθ = 3.0–27.5°
c = 13.5581 (12) ŵ = 1.59 mm1
β = 100.692 (2)°T = 294 K
V = 700.65 (11) Å3Rectangle, green
Z = 20.15 × 0.13 × 0.09 mm

Data collection

Rigaku Mercury2 diffractometer1363 independent reflections
Radiation source: fine-focus sealed tube1228 reflections with I > 2σ(I)
graphiteRint = 0.020
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = −8→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −8→9
Tmin = 0.797, Tmax = 0.870l = −15→16
3743 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0555P)2 + 1.0273P] where P = (Fo2 + 2Fc2)/3
1363 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.0265 (2)
N61.0060 (4)0.1967 (3)0.61317 (18)0.0302 (6)
C60.7920 (5)0.3986 (4)0.3685 (2)0.0260 (6)
C50.9283 (4)0.3088 (4)0.4476 (2)0.0263 (6)
N40.6177 (4)0.4748 (3)0.37835 (19)0.0294 (6)
C40.8741 (5)0.2899 (4)0.5446 (2)0.0258 (6)
N30.8245 (4)0.4167 (4)0.27476 (19)0.0345 (6)
C31.1079 (5)0.2369 (4)0.4307 (2)0.0322 (7)
H3A1.14390.24970.36800.039*
N20.5399 (4)0.5422 (4)0.2875 (2)0.0365 (6)
C21.2364 (5)0.1461 (4)0.5041 (3)0.0364 (7)
H2A1.35760.09970.49140.044*
C11.1816 (5)0.1263 (4)0.5947 (2)0.0349 (7)
H1A1.26460.06420.64460.042*
N10.6643 (5)0.5072 (4)0.2266 (2)0.0385 (7)
N50.7116 (4)0.3534 (3)0.56979 (17)0.0291 (6)
H5A0.75850.40760.62790.035*
H5B0.64310.26290.58660.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0241 (3)0.0352 (3)0.0227 (3)0.00433 (19)0.0104 (2)0.00138 (19)
N60.0281 (14)0.0330 (14)0.0300 (13)0.0006 (10)0.0068 (11)0.0029 (10)
C60.0267 (15)0.0296 (14)0.0243 (13)−0.0035 (11)0.0112 (11)−0.0035 (11)
C50.0250 (15)0.0270 (14)0.0292 (15)−0.0012 (11)0.0108 (12)−0.0019 (11)
N40.0280 (14)0.0395 (14)0.0223 (12)0.0041 (11)0.0087 (10)0.0012 (10)
C40.0239 (15)0.0258 (14)0.0286 (14)−0.0029 (11)0.0076 (12)0.0000 (11)
N30.0342 (15)0.0477 (16)0.0248 (12)0.0030 (12)0.0137 (11)−0.0019 (11)
C30.0325 (17)0.0347 (16)0.0328 (16)0.0011 (13)0.0151 (13)−0.0031 (13)
N20.0353 (16)0.0513 (16)0.0245 (13)0.0073 (13)0.0100 (11)0.0046 (12)
C20.0280 (16)0.0374 (17)0.0464 (18)0.0065 (13)0.0141 (14)−0.0028 (14)
C10.0297 (17)0.0334 (16)0.0393 (17)0.0024 (12)0.0002 (13)0.0015 (13)
N10.0365 (17)0.0561 (19)0.0242 (13)0.0054 (12)0.0092 (12)0.0040 (11)
N50.0277 (14)0.0401 (15)0.0229 (11)0.0069 (11)0.0135 (10)0.0056 (10)

Geometric parameters (Å, °)

Cu1—N5i1.930 (2)N4—N21.354 (4)
Cu1—N51.930 (2)C4—N51.293 (4)
Cu1—N41.963 (2)N3—N11.348 (4)
Cu1—N4i1.963 (2)C3—C21.386 (5)
N6—C11.358 (4)C3—H3A0.9300
N6—C41.369 (4)N2—N11.302 (4)
C6—N41.335 (4)C2—C11.354 (5)
C6—N31.336 (4)C2—H2A0.9300
C6—C51.455 (4)C1—H1A0.9300
C5—C31.380 (4)N5—H5A0.9000
C5—C41.435 (4)N5—H5B0.9000
N5i—Cu1—N5180C6—N3—N1105.3 (2)
N5i—Cu1—N490.97 (10)C5—C3—C2122.1 (3)
N5—Cu1—N489.03 (10)C5—C3—H3A118.9
N5i—Cu1—N4i89.03 (10)C2—C3—H3A118.9
N5—Cu1—N4i90.97 (10)N1—N2—N4108.2 (3)
N4—Cu1—N4i180C1—C2—C3118.5 (3)
C1—N6—C4124.1 (3)C1—C2—H2A120.7
N4—C6—N3110.1 (3)C3—C2—H2A120.7
N4—C6—C5125.5 (3)C2—C1—N6120.3 (3)
N3—C6—C5124.4 (3)C2—C1—H1A119.8
C3—C5—C4118.8 (3)N6—C1—H1A119.8
C3—C5—C6121.3 (3)N2—N1—N3110.1 (3)
C4—C5—C6119.9 (3)C4—N5—Cu1132.2 (2)
C6—N4—N2106.2 (2)C4—N5—H5A104.2
C6—N4—Cu1128.3 (2)Cu1—N5—H5A104.2
N2—N4—Cu1125.5 (2)C4—N5—H5B104.2
N5—C4—N6119.4 (3)Cu1—N5—H5B104.2
N5—C4—C5124.5 (3)H5A—N5—H5B105.5
N6—C4—C5116.1 (3)
N4—C6—C5—C3−178.6 (3)C6—C5—C4—N6176.9 (3)
N3—C6—C5—C31.2 (5)N4—C6—N3—N10.1 (3)
N4—C6—C5—C43.1 (4)C5—C6—N3—N1−179.8 (3)
N3—C6—C5—C4−177.1 (3)C4—C5—C3—C20.5 (5)
N3—C6—N4—N20.1 (4)C6—C5—C3—C2−177.8 (3)
C5—C6—N4—N2179.9 (3)C6—N4—N2—N1−0.2 (4)
N3—C6—N4—Cu1−176.5 (2)Cu1—N4—N2—N1176.5 (2)
C5—C6—N4—Cu13.4 (4)C5—C3—C2—C10.8 (5)
N5—Cu1—N4—C6−7.2 (3)C3—C2—C1—N6−1.1 (5)
N5—Cu1—N4—N2176.9 (3)C4—N6—C1—C20.1 (5)
C1—N6—C4—N5−179.3 (3)N4—N2—N1—N30.2 (4)
C1—N6—C4—C51.2 (4)C6—N3—N1—N2−0.2 (4)
C3—C5—C4—N5179.0 (3)N6—C4—N5—Cu1175.8 (2)
C6—C5—C4—N5−2.6 (4)C5—C4—N5—Cu1−4.7 (5)
C3—C5—C4—N6−1.4 (4)N4—Cu1—N5—C48.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5A···N2i0.902.502.902 (4)108

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2827).

References

  • Bhandari, S., Hague, C. E., Mahon, M. F. & Molloy, K. C. (2000). J. Chem. Soc. Dalton Trans. pp. 663–669.
  • Butler, R. N. (1984). In Comprehensive Heterocyclic Chemistry, Vol. 5, edited by A. R. Katritzky, pp. 791–838. Amsterdam: Elsevier.
  • Fu, D. W., Zhang, W. & Xiong, R. G. (2008). Cryst. Growth Des.8, 3461–3464.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [PubMed]
  • Ye, Q., Li, Y. H., Song, Y. M., Huang, X. F., Xiong, R. G. & Xue, Z. L. (2005). Inorg. Chem.44, 3618–3625. [PubMed]
  • Ye, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chang, P. W. H., Zhu, J. S., Huang, S. P. D. & Xiong, R. G. (2006). J. Am. Chem. Soc.128, 6554–6555. [PubMed]
  • Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev.37, 84–100. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography