PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2407.
Published online 2009 September 9. doi:  10.1107/S1600536809035223
PMCID: PMC2970252

2-Cyano­anilinium bromide

Abstract

In the cation of the title compound, C7H7N2 +·Br, the nitrile group and the benzene ring are almost coplanar (r.m.s. deviation = 0.0043 Å). In the crystal, the cations and anions are connected by inter­molecular N—H(...)Br hydrogen bonds, forming a two-dimensional network parallel to (010).

Related literature

For nitrile derivatives, see: Fu et al. (2008 [triangle]); Wang et al. (2002 [triangle]). Nitrile derivatives used in the construction of novel metal-organic frameworks. For applications of metal-organic coordination compounds, see: Fu et al. (2007 [triangle]); Chen et al. (2000 [triangle]); Fu & Xiong (2008 [triangle]); Xiong et al. (1999 [triangle]); Xie et al. (2003 [triangle]); Zhang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2407-scheme1.jpg

Experimental

Crystal data

  • C7H7N2 +·Br
  • M r = 199.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2407-efi1.jpg
  • a = 5.7844 (12) Å
  • b = 15.896 (3) Å
  • c = 8.4882 (17) Å
  • β = 92.72 (3)°
  • V = 779.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.19 mm−1
  • T = 298 K
  • 0.40 × 0.05 × 0.05 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.65, T max = 0.77
  • 3848 measured reflections
  • 1773 independent reflections
  • 1581 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.050
  • S = 0.87
  • 1773 reflections
  • 93 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.41 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 872 Friedels pairs
  • Flack parameter: 0.004 (13)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035223/xu2593sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035223/xu2593Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Outstanding Doctoral Dissertation Fund from Southeast University.

supplementary crystallographic information

Comment

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2000; Fu & Xiong (2008); Xie et al., 2003; Zhang et al., 2001; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Wang et al., 2002; Fu et al., 2008). We report here the crystal structure of the title compound.

In the 2-cyanoanilinium cation (Fig.1), the nitrile group and the benzene ring are almost coplanar. The nitrile group C7[equivalent]N2 bond length of 1.142 (4) Å is within the normal range.

In the crystal structure, all the amine group H atoms are involved in N—H···Br hydrogen bonds (Table 1) with Br- anions. These hydrogen bonds along with N—H···Br hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2) parallel to the (0 1 0) plane.

Experimental

The commercial 2-aminobenzonitrile (3 mmol, 0.55 g) and HBr (0.5 ml) were dissolved in ethanol (20 ml). Colourless needle-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement

All H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). A rotating-group model was used for the -NH3 group.

Figures

Fig. 1.
The structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis showing the N—H···Br hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C7H7N2+·BrF(000) = 392
Mr = 199.06Dx = 1.696 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1581 reflections
a = 5.7844 (12) Åθ = 2.6–27.5°
b = 15.896 (3) ŵ = 5.19 mm1
c = 8.4882 (17) ÅT = 298 K
β = 92.72 (3)°Needle, colourless
V = 779.6 (3) Å30.40 × 0.05 × 0.05 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer1773 independent reflections
Radiation source: fine-focus sealed tube1581 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.6°
CCD profile fitting scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −20→20
Tmin = 0.65, Tmax = 0.77l = −10→11
3848 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025w = 1/[σ2(Fo2) + (0.0143P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max < 0.001
S = 0.87Δρmax = 0.47 e Å3
1773 reflectionsΔρmin = −0.41 e Å3
93 parametersExtinction correction: SHELXTL (Version 5.1; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0206 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 872 Friedels pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.004 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.05750 (10)0.208462 (17)0.44566 (9)0.04064 (12)
N10.0515 (5)0.32177 (17)0.7619 (3)0.0347 (6)
H1A0.03320.29500.67010.052*
H1B−0.07130.31270.81880.052*
H1C0.17800.30270.81400.052*
C6−0.0799 (6)0.4675 (3)0.7945 (5)0.0372 (10)
H6−0.20280.44730.85030.045*
C30.2867 (8)0.5276 (3)0.6309 (5)0.0451 (11)
H30.41020.54830.57620.054*
C10.0755 (6)0.4115 (2)0.7337 (5)0.0309 (9)
C40.1322 (8)0.5822 (3)0.6917 (5)0.0500 (12)
H40.15160.63990.67880.060*
C70.4233 (6)0.3856 (2)0.5783 (4)0.0410 (8)
N20.5521 (6)0.3440 (2)0.5163 (4)0.0618 (10)
C20.2611 (6)0.4411 (3)0.6501 (4)0.0346 (9)
C5−0.0547 (7)0.5521 (3)0.7733 (5)0.0474 (12)
H5−0.16130.58940.81300.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.03349 (17)0.04202 (18)0.04729 (19)−0.0034 (2)0.01111 (12)−0.0112 (3)
N10.0284 (14)0.0369 (15)0.0396 (16)−0.0027 (12)0.0104 (12)−0.0036 (13)
C60.031 (2)0.043 (2)0.038 (2)−0.0023 (18)0.0075 (17)−0.0038 (18)
C30.044 (3)0.046 (3)0.046 (3)−0.012 (2)0.007 (2)0.003 (2)
C10.027 (2)0.035 (2)0.0309 (18)0.0005 (15)0.0021 (15)−0.0028 (15)
C40.065 (3)0.031 (2)0.055 (3)−0.004 (2)0.008 (2)0.003 (2)
C70.0303 (18)0.049 (2)0.044 (2)−0.0078 (17)0.0101 (16)0.0045 (18)
N20.049 (2)0.070 (2)0.069 (2)0.0068 (19)0.031 (2)0.0025 (18)
C20.032 (2)0.039 (2)0.032 (2)−0.0017 (17)0.0039 (17)0.0032 (16)
C50.056 (3)0.041 (2)0.045 (3)0.012 (2)0.006 (2)−0.007 (2)

Geometric parameters (Å, °)

N1—C11.455 (5)C3—C21.393 (6)
N1—H1A0.8900C3—H30.9300
N1—H1B0.8900C1—C21.396 (5)
N1—H1C0.8900C4—C51.396 (6)
C6—C51.366 (6)C4—H40.9300
C6—C11.382 (5)C7—N21.142 (4)
C6—H60.9300C7—C21.444 (6)
C3—C41.365 (6)C5—H50.9300
C1—N1—H1A109.5C6—C1—N1120.1 (3)
C1—N1—H1B109.5C2—C1—N1119.7 (3)
H1A—N1—H1B109.5C3—C4—C5120.4 (4)
C1—N1—H1C109.5C3—C4—H4119.8
H1A—N1—H1C109.5C5—C4—H4119.8
H1B—N1—H1C109.5N2—C7—C2177.0 (4)
C5—C6—C1120.6 (4)C3—C2—C1118.7 (4)
C5—C6—H6119.7C3—C2—C7118.6 (4)
C1—C6—H6119.7C1—C2—C7122.6 (4)
C4—C3—C2120.5 (4)C6—C5—C4119.5 (4)
C4—C3—H3119.7C6—C5—H5120.2
C2—C3—H3119.7C4—C5—H5120.2
C6—C1—C2120.2 (4)
C5—C6—C1—C20.2 (6)N1—C1—C2—C3−177.0 (4)
C5—C6—C1—N1177.8 (4)C6—C1—C2—C7−177.4 (4)
C2—C3—C4—C5−0.4 (7)N1—C1—C2—C75.0 (6)
C4—C3—C2—C1−0.5 (6)C1—C6—C5—C4−1.1 (7)
C4—C3—C2—C7177.6 (4)C3—C4—C5—C61.2 (7)
C6—C1—C2—C30.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.892.363.234 (3)168
N1—H1B···Br1i0.892.473.355 (3)173
N1—H1C···Br1ii0.892.423.286 (3)164

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2593).

References

  • Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H., Huang, S.-P. & -, D. (2007). J. Am. Chem. Soc.129, 5346–5347. [PubMed]
  • Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. [PubMed]
  • Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem.18, 1191–1194.
  • Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem.20, 3712–3715.
  • Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem.23, 1051–1052.
  • Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography