PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2344.
Published online 2009 September 5. doi:  10.1107/S160053680903503X
PMCID: PMC2970251

4-Methoxy­anilinium bromide

Abstract

The title compound, C7H10NO+·Br, consists of almost planar 4-methoxy­anilinium cations, wherein the O atom lies 0.049 (3) Å out of the plane formed by the non-H atoms, and a Br anion. Strong N—H(...)Br and N—H(...)(Br,Br) hydrogen bonding contributes to the stability of the crystal structure and links the cations and anions into a three-dimensional network.

Related literature

For background to dielectric–ferroelectric materials, see: Hang et al. (2009 [triangle]); Li et al. (2008 [triangle]). For related structures, see: Tan et al. (2006 [triangle]); Soumhi et al. (2006 [triangle]); Ben Amor et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2344-scheme1.jpg

Experimental

Crystal data

  • C7H10NO+·Br
  • M r = 204.07
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2344-efi1.jpg
  • a = 8.9779 (18) Å
  • b = 8.6978 (17) Å
  • c = 22.132 (4) Å
  • V = 1728.2 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.69 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.391, T max = 0.391
  • 16334 measured reflections
  • 1985 independent reflections
  • 1276 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.100
  • S = 1.12
  • 1985 reflections
  • 93 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903503X/pv2194sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903503X/pv2194Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

This study is a part of systematic investigation of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Hang et al., 2009) and organic-inorganic hybrids. The title compound, 4-methoxyanilinium bromide, (I), has no dielectric disuniform from 80 K to 450 K, (m.p. 458–459 K). In this article, the crystal structure of (I) has been presented.

The asymmetric unit of the title compound is built up from an almost planar 4-methoxybenzenamine cation wherein O1 lies 0.049 (3) Å out of the plane formed by its non-hydrogen atoms and a Br- anion (Fig. 1). The strong N—H···Br hydrogen bonding (N···Br distances 3.300 (3)–3.430 (3) Å) contribute to the stability of the crystal structure and lead the cations and anions to tridimensional network (Fig 2). The crystal structures containing 4-methoxybenzenamine cation have been reported (Tan et al., 2006; Soumhi et al., 2006; Ben Amor et al., 1995).

Experimental

Single crystals of 4-methoxyanilinium bromide were prepared by slow evaporation at room temperature of an ethanol solution of 4-methoxybenzenamine and hydrobromic acid.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
Fig. 2.
A view of the packing of the title compound; dashed lines indicate hydrogen bonds.

Crystal data

C7H10NO+·BrF(000) = 816
Mr = 204.07Dx = 1.569 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6139 reflections
a = 8.9779 (18) Åθ = 3.3–27.7°
b = 8.6978 (17) ŵ = 4.69 mm1
c = 22.132 (4) ÅT = 298 K
V = 1728.2 (6) Å3Prism, colourless
Z = 80.20 × 0.20 × 0.20 mm

Data collection

Rigaku SCXmini diffractometer1985 independent reflections
Radiation source: fine-focus sealed tube1276 reflections with I > 2σ(I)
graphiteRint = 0.075
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.391, Tmax = 0.391l = −28→28
16334 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.100w = 1/[σ2(Fo2) + (0.0263P)2 + 1.3429P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
1985 reflectionsΔρmax = 0.39 e Å3
93 parametersΔρmin = −0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0232 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1517 (3)0.3060 (4)0.29591 (13)0.0721 (9)
N10.0282 (4)0.2527 (4)0.05037 (14)0.0548 (9)
H1A0.08420.32010.03050.066*
H1B−0.06760.27480.04470.066*
H1C0.04690.15830.03690.066*
C10.1170 (5)0.2823 (5)0.23712 (18)0.0497 (10)
C20.1934 (5)0.3727 (5)0.1965 (2)0.0650 (12)
H2A0.26500.44120.21050.078*
C30.1653 (5)0.3630 (5)0.13576 (18)0.0596 (11)
H3A0.21660.42580.10880.071*
C40.0621 (4)0.2612 (4)0.11502 (17)0.0427 (9)
C5−0.0123 (4)0.1673 (5)0.15443 (17)0.0538 (10)
H5A−0.08080.09580.14010.065*
C60.0153 (5)0.1797 (5)0.21591 (17)0.0533 (11)
H6A−0.03630.11730.24290.064*
C70.0851 (7)0.2069 (6)0.3394 (2)0.0914 (17)
H7A0.11840.23510.37910.137*
H7B0.11340.10250.33120.137*
H7C−0.02130.21620.33730.137*
Br10.25218 (4)0.51025 (4)−0.021898 (16)0.0495 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.084 (2)0.088 (2)0.0449 (17)0.0026 (19)−0.0164 (17)−0.0048 (17)
N10.057 (2)0.059 (2)0.0480 (19)0.0099 (16)−0.0074 (17)−0.0047 (15)
C10.048 (2)0.053 (2)0.048 (2)0.011 (2)−0.0035 (19)−0.006 (2)
C20.067 (3)0.068 (3)0.060 (3)−0.021 (2)−0.008 (2)−0.009 (2)
C30.063 (3)0.066 (3)0.050 (3)−0.017 (2)−0.001 (2)−0.001 (2)
C40.042 (2)0.045 (2)0.041 (2)0.0082 (17)−0.0029 (17)−0.0057 (17)
C50.049 (2)0.054 (3)0.058 (3)−0.005 (2)−0.007 (2)−0.006 (2)
C60.051 (3)0.061 (3)0.048 (2)−0.004 (2)0.001 (2)0.0055 (19)
C70.107 (4)0.120 (5)0.047 (3)0.011 (4)−0.007 (3)0.012 (3)
Br10.0493 (3)0.0461 (3)0.0531 (3)0.00163 (19)−0.0010 (2)−0.00423 (18)

Geometric parameters (Å, °)

O1—C11.354 (5)C3—C41.361 (5)
O1—C71.424 (6)C3—H3A0.9300
N1—C41.465 (5)C4—C51.369 (5)
N1—H1A0.8893C5—C61.387 (5)
N1—H1B0.8903C5—H5A0.9300
N1—H1C0.8899C6—H6A0.9300
C1—C61.360 (6)C7—H7A0.9600
C1—C21.377 (6)C7—H7B0.9600
C2—C31.370 (5)C7—H7C0.9600
C2—H2A0.9300
C1—O1—C7117.5 (4)C3—C4—C5120.4 (4)
C4—N1—H1A109.5C3—C4—N1120.3 (4)
C4—N1—H1B109.2C5—C4—N1119.4 (3)
H1A—N1—H1B109.5C4—C5—C6119.4 (4)
C4—N1—H1C109.6C4—C5—H5A120.3
H1A—N1—H1C109.6C6—C5—H5A120.3
H1B—N1—H1C109.5C1—C6—C5120.6 (4)
O1—C1—C6125.9 (4)C1—C6—H6A119.7
O1—C1—C2115.2 (4)C5—C6—H6A119.7
C6—C1—C2118.9 (4)O1—C7—H7A109.5
C3—C2—C1120.9 (4)O1—C7—H7B109.5
C3—C2—H2A119.5H7A—C7—H7B109.5
C1—C2—H2A119.5O1—C7—H7C109.5
C4—C3—C2119.7 (4)H7A—C7—H7C109.5
C4—C3—H3A120.1H7B—C7—H7C109.5
C2—C3—H3A120.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.892.523.409 (3)177
N1—H1B···Br1i0.892.553.314 (3)145
N1—H1B···Br1ii0.893.003.430 (3)112
N1—H1C···Br1iii0.892.573.300 (3)140

Symmetry codes: (i) −x, −y+1, −z; (ii) x−1/2, −y+1/2, −z; (iii) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2194).

References

  • Ben Amor, F., Soumhi, E. H., Ould Abdellahi, M. & Jouini, T. (1995). Acta Cryst. C51, 933–935.
  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des.9, 2026–2029.
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soumhi, E. H., Saadoune, I. & Driss, A. (2006). Acta Cryst. E62, o212–o214.
  • Tan, T.-F., Han, J., Pang, M.-L., Song, H.-B., Ma, Y.-X. & Mang, J.-B. (2006). Cryst. Growth Des.6, 1186–1193.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography