PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2335.
Published online 2009 September 5. doi:  10.1107/S1600536809034734
PMCID: PMC2970248

N′-(Propan-2-yl­idene)nicotinohydrazide

Abstract

Crystals of the title compound, C9H11N3O, were obtained from a condensation reaction of nicotinohydrazide and acetone. In the mol­ecular structure, the pyridine ring is oriented at a dihedral angle of 36.28 (10)° with respect to the amide plane. In the crystal structure, mol­ecules are linked via N—H(...)O hydrogen bonds, forming chains.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2335-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O
  • M r = 177.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2335-efi1.jpg
  • a = 7.5439 (4) Å
  • b = 18.0292 (9) Å
  • c = 7.6172 (4) Å
  • β = 115.937 (3)°
  • V = 931.67 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.42 × 0.21 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.978, T max = 0.990
  • 14297 measured reflections
  • 2172 independent reflections
  • 1301 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.161
  • S = 1.02
  • 2172 reflections
  • 120 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034734/xu2604sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034734/xu2604Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the coordination chemistry of Schiff bases, we have synthesized the title compound and report here its crystal structure.

IN the molecular structure (Fig. 1), the pyridine ring is oriented with respect to N2/C4/O plane with a dihedral angle of 36.28 (10)°. In the crystal structure intermolecular N—H···O hydrogen bonding links the molecules to form the one-dimensional chains (Table 1).

Experimental

Nicotinohydrazide (1 mmol, 0.137 g) was dissolved in anhydrous ethanol (15 ml). The mixture was stirred for several min at 351 K, then the acetone (1 mmol, 0.058 g) in ethanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The solid product was isolated and recrystallized from methanol. Colourless single crystals were obtained after 3 d.

Refinement

All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å. Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C,N) for the others.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C9H11N3OF(000) = 376
Mr = 177.21Dx = 1.263 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3071 reflections
a = 7.5439 (4) Åθ = 2.3–27.0°
b = 18.0292 (9) ŵ = 0.09 mm1
c = 7.6172 (4) ÅT = 296 K
β = 115.937 (3)°Block, colourless
V = 931.67 (8) Å30.42 × 0.21 × 0.12 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2172 independent reflections
Radiation source: fine-focus sealed tube1301 reflections with I > 2σ(I)
graphiteRint = 0.046
ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −9→9
Tmin = 0.978, Tmax = 0.990k = −23→23
14297 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0882P)2 + 0.0683P] where P = (Fo2 + 2Fc2)/3
2172 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.6021 (2)0.20018 (9)0.3243 (2)0.0526 (4)
N20.5607 (2)0.23097 (8)0.1426 (2)0.0498 (4)
H2A0.48960.20780.03610.060*
N30.5259 (3)0.44511 (10)−0.2362 (3)0.0683 (5)
O0.74766 (19)0.33093 (7)0.29001 (19)0.0640 (4)
C10.5162 (3)0.07664 (11)0.1687 (3)0.0707 (6)
H1A0.37510.07250.10650.106*
H1B0.57310.02900.21840.106*
H1C0.56120.09350.07550.106*
C20.5773 (2)0.13080 (11)0.3328 (3)0.0522 (5)
C30.6197 (3)0.10093 (13)0.5301 (3)0.0748 (6)
H3A0.67120.13980.62520.112*
H3B0.71470.06170.56270.112*
H3C0.50030.08210.52930.112*
C40.6361 (2)0.29792 (10)0.1407 (3)0.0470 (5)
C50.5842 (2)0.33173 (9)−0.0540 (2)0.0448 (4)
C60.5646 (3)0.29200 (11)−0.2158 (3)0.0553 (5)
H7A0.57700.2406−0.21010.066*
C70.5262 (3)0.32960 (13)−0.3867 (3)0.0649 (6)
H8A0.51290.3040−0.49780.078*
C80.5083 (3)0.40459 (13)−0.3895 (3)0.0678 (6)
H9A0.48210.4292−0.50550.081*
C90.5659 (3)0.40808 (11)−0.0721 (3)0.0547 (5)
H10A0.58270.43530.03770.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0529 (9)0.0484 (9)0.0449 (9)0.0063 (7)0.0108 (7)0.0040 (7)
N20.0472 (8)0.0448 (9)0.0428 (8)−0.0020 (7)0.0062 (6)−0.0001 (7)
N30.0776 (12)0.0534 (11)0.0617 (11)−0.0046 (8)0.0191 (9)0.0067 (9)
O0.0620 (8)0.0498 (8)0.0513 (8)−0.0055 (6)−0.0019 (6)−0.0041 (6)
C10.0713 (13)0.0476 (12)0.0699 (14)0.0045 (10)0.0092 (11)0.0022 (10)
C20.0411 (9)0.0499 (11)0.0542 (11)0.0086 (8)0.0103 (8)0.0066 (9)
C30.0817 (14)0.0678 (14)0.0718 (15)0.0150 (12)0.0306 (12)0.0183 (12)
C40.0382 (8)0.0406 (10)0.0480 (10)0.0027 (7)0.0056 (7)−0.0036 (8)
C50.0341 (8)0.0432 (10)0.0481 (11)−0.0022 (7)0.0096 (7)−0.0036 (8)
C60.0563 (11)0.0473 (11)0.0605 (13)−0.0027 (8)0.0239 (9)−0.0063 (9)
C70.0699 (13)0.0732 (15)0.0559 (13)−0.0130 (11)0.0315 (10)−0.0100 (11)
C80.0732 (13)0.0705 (15)0.0555 (13)−0.0120 (11)0.0244 (11)0.0041 (11)
C90.0528 (10)0.0466 (11)0.0532 (11)−0.0041 (8)0.0127 (8)−0.0030 (9)

Geometric parameters (Å, °)

N1—C21.271 (2)C3—H3A0.9600
N1—N21.394 (2)C3—H3B0.9600
N2—C41.337 (2)C3—H3C0.9600
N2—H2A0.8600C4—C51.489 (2)
N3—C91.330 (2)C5—C61.376 (2)
N3—C81.334 (3)C5—C91.384 (2)
O—C41.232 (2)C6—C71.382 (3)
C1—C21.492 (3)C6—H7A0.9300
C1—H1A0.9600C7—C81.358 (3)
C1—H1B0.9600C7—H8A0.9300
C1—H1C0.9600C8—H9A0.9300
C2—C31.493 (3)C9—H10A0.9300
C2—N1—N2117.96 (15)H3B—C3—H3C109.5
C4—N2—N1117.32 (14)O—C4—N2123.21 (17)
C4—N2—H2A121.3O—C4—C5119.84 (16)
N1—N2—H2A121.3N2—C4—C5116.93 (14)
C9—N3—C8116.26 (18)C6—C5—C9117.46 (17)
C2—C1—H1A109.5C6—C5—C4123.87 (16)
C2—C1—H1B109.5C9—C5—C4118.56 (16)
H1A—C1—H1B109.5C5—C6—C7118.99 (18)
C2—C1—H1C109.5C5—C6—H7A120.5
H1A—C1—H1C109.5C7—C6—H7A120.5
H1B—C1—H1C109.5C8—C7—C6118.78 (19)
N1—C2—C1126.87 (17)C8—C7—H8A120.6
N1—C2—C3115.77 (18)C6—C7—H8A120.6
C1—C2—C3117.34 (18)N3—C8—C7124.1 (2)
C2—C3—H3A109.5N3—C8—H9A117.9
C2—C3—H3B109.5C7—C8—H9A117.9
H3A—C3—H3B109.5N3—C9—C5124.38 (18)
C2—C3—H3C109.5N3—C9—H10A117.8
H3A—C3—H3C109.5C5—C9—H10A117.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···Oi0.862.082.9136 (18)162

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2604).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography