PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1249.
Published online 2009 September 26. doi:  10.1107/S1600536809038392
PMCID: PMC2970244

Aqua­tris(1H-benzimidazole-κN 3)(dichloro­acetato-κO)copper(II) dichloro­acetate dihydrate

Abstract

The title compound, [Cu(C2HCl2O2)(C7H6N2)3(H2O)]C2HCl2O2·2H2O, was prepared by reaction of copper(II) 2,2-dichloro­acetic acid and benzimidazole in ethanol solution. The compound shows a regular trigonal–bipyramidal stereochemistry. The CuII centre possesses a five-coordinated environment, coordinated by three N atoms from the three benzimidazole ligands and two O atoms, one from the dichloro­acetate ligand and the other from the coordinated water mol­ecule. The mol­ecular structure and packing are stabilized by O—H(...)O and N—H(...)O hydrogen bonds. The Cl atoms are disordered over two sites, with relative occupancies 0.67 (3) and 0.33 (3).

Related literature

For background to penta-coordinated copper complexes, see: Tyagi et al. (1984 [triangle]). For a related compound, see: Barszcz et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1249-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2HCl2O2)(C7H6N2)3(H2O)]C2HCl2O2·2H2O
  • M r = 727.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1249-efi1.jpg
  • a = 9.6027 (16) Å
  • b = 8.6957 (15) Å
  • c = 37.799 (6) Å
  • β = 93.945 (3)°
  • V = 3148.8 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 293 K
  • 0.23 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 19614 measured reflections
  • 7576 independent reflections
  • 5174 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.122
  • S = 1.04
  • 7576 reflections
  • 488 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.00 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038392/br2115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038392/br2115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Foundation of Weifang University (grant No. 2009Z24). Thanks are also extended to Hai-Xing Liu for help with preparing the CIF.

supplementary crystallographic information

Comment

The penta-coordinated copper complexes have been attracting great interest for their diverse stereo and physicochemical properties (Tyagi et al., 1984). Therefore the coordination chemistry of Cu(II) with ligands is of great interest. In this paper, we reported the synthesis and crystal structure of the title compound.

In the crystal structure of the title compound (Fig. 1), all the bond length and angle are in the normal range. (Barszcz et al., 2004). The title compound consists of discrete monovalent complex cations, dichloroacetic acid anion and solvent water molecules. The dichloroacetic ions appear to be loosely held in lattice holes by Coulombic forces and by weak hydrogen bonds to the solvent water molecules. The interionic hydrogen bonds play an important role in the crystal packing and the stability of the complex. The Cl1 and Cl2 atoms are disordered.

Experimental

Solid copper(II) 2,2-dicholoracetate, C4H2Cl4Cu1O4 0.32 g (1 mmol) and benzimidazole 0.35 g (3 mmol) were added in 50 ml anhydrous alcohol under stirring. The mixture was refluxed for 5 h. The blue solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, a blue crystalline solid appeared three days later and was separated by filtration. Determined by X-ray crystallography.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq of the parent atoms. The Cl1 atom and Cl2 atom are disordered over two sites, with relative occupancies 0.672 (34) and 0.328 (34).

Figures

Fig. 1.
The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

[Cu(C2HCl2O2)(C7H6N2)3(H2O)]C2HCl2O2·2H2OF(000) = 1484
Mr = 727.86Dx = 1.535 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2360 reflections
a = 9.6027 (16) Åθ = 2.3–28.2°
b = 8.6957 (15) ŵ = 1.09 mm1
c = 37.799 (6) ÅT = 293 K
β = 93.945 (3)°Block, blue
V = 3148.8 (9) Å30.23 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer5174 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
graphiteθmax = 28.2°, θmin = 2.2°
[var phi] and ω scansh = −12→10
19614 measured reflectionsk = −11→11
7576 independent reflectionsl = −34→50

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0529P)2 + 1.2061P] where P = (Fo2 + 2Fc2)/3
7576 reflections(Δ/σ)max = 0.001
488 parametersΔρmax = 1.00 e Å3
10 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.55853 (3)0.58911 (4)0.621230 (8)0.03147 (11)
Cl1A0.8686 (6)0.1449 (6)0.63210 (11)0.0763 (11)0.67 (3)
Cl2A0.9346 (9)0.2214 (14)0.56111 (10)0.087 (2)0.67 (3)
Cl1B0.8843 (14)0.1269 (15)0.6237 (7)0.107 (4)0.33 (3)
Cl2B0.9719 (14)0.298 (3)0.5610 (2)0.096 (3)0.33 (3)
O10.7499 (2)0.5103 (2)0.61458 (6)0.0418 (5)
O20.6514 (2)0.3248 (2)0.58070 (6)0.0461 (5)
O1W0.6458 (2)0.7384 (3)0.66834 (6)0.0456 (5)
H1B0.619 (3)0.741 (4)0.6881 (6)0.055*
H1C0.729 (2)0.749 (4)0.6710 (9)0.055*
N10.3528 (2)0.6367 (3)0.62332 (6)0.0353 (5)
N20.1489 (3)0.6637 (3)0.64701 (7)0.0439 (6)
H20.096 (3)0.671 (4)0.6629 (7)0.044 (9)*
N30.5337 (2)0.4060 (3)0.65180 (6)0.0352 (5)
N40.5672 (3)0.2358 (3)0.69497 (7)0.0430 (6)
H40.603 (3)0.193 (4)0.7139 (7)0.066 (12)*
N50.5864 (2)0.7632 (3)0.58822 (6)0.0319 (5)
N60.6065 (3)1.0057 (3)0.57153 (7)0.0407 (6)
H60.619 (4)1.100 (2)0.5752 (9)0.058 (11)*
C10.2615 (3)0.6892 (4)0.55998 (9)0.0503 (8)
H1A0.353 (4)0.666 (4)0.5496 (9)0.060*
C20.1406 (4)0.7264 (6)0.53993 (11)0.0736 (13)
H2A0.145 (4)0.736 (5)0.5136 (11)0.088*
C30.0141 (4)0.7475 (6)0.55558 (13)0.0830 (14)
H3A−0.060 (3)0.783 (5)0.5426 (10)0.100*
C40.0025 (4)0.7312 (5)0.59114 (12)0.0609 (10)
H4A−0.085 (4)0.737 (4)0.6013 (10)0.073*
C50.1233 (3)0.6914 (3)0.61125 (9)0.0409 (7)
C60.2516 (3)0.6730 (3)0.59624 (8)0.0364 (6)
C70.2861 (3)0.6327 (4)0.65275 (9)0.0430 (7)
H6A0.330 (3)0.608 (4)0.6749 (9)0.052*
C80.3385 (3)0.2603 (4)0.61785 (8)0.0408 (7)
H8A0.323 (3)0.327 (4)0.6009 (9)0.049*
C90.2590 (3)0.1300 (4)0.61945 (10)0.0486 (8)
H9A0.188 (4)0.110 (4)0.6006 (9)0.058*
C100.2782 (4)0.0263 (4)0.64766 (10)0.0515 (9)
H10A0.219 (4)−0.060 (4)0.6483 (9)0.062*
C110.3790 (4)0.0449 (4)0.67445 (9)0.0459 (8)
H11A0.397 (3)−0.027 (4)0.6935 (9)0.055*
C120.4602 (3)0.1785 (3)0.67299 (7)0.0347 (6)
C130.4394 (3)0.2852 (3)0.64544 (7)0.0330 (6)
C140.6067 (3)0.3692 (4)0.68129 (8)0.0413 (7)
H14A0.685 (3)0.428 (4)0.6910 (8)0.050*
C150.6404 (4)0.6474 (4)0.52901 (8)0.0463 (8)
H15A0.634 (3)0.546 (4)0.5351 (9)0.056*
C160.6743 (4)0.6869 (5)0.49547 (9)0.0633 (10)
H16A0.690 (4)0.609 (5)0.4791 (11)0.076*
C170.6901 (4)0.8402 (5)0.48565 (9)0.0620 (10)
H17A0.717 (4)0.858 (4)0.4628 (10)0.074*
C180.6700 (4)0.9586 (5)0.50846 (9)0.0509 (9)
H18A0.683 (4)1.060 (4)0.5054 (9)0.061*
C190.6356 (3)0.9184 (3)0.54269 (7)0.0361 (6)
C200.6221 (3)0.7658 (3)0.55289 (7)0.0310 (6)
C210.5786 (3)0.9084 (4)0.59758 (8)0.0376 (6)
H21A0.559 (3)0.941 (4)0.6204 (8)0.045*
C220.7507 (3)0.3848 (3)0.59806 (8)0.0397 (7)
C230.8912 (4)0.3007 (4)0.60214 (9)0.0517 (8)
H230.963 (4)0.356 (4)0.6143 (9)0.062*
Cl31.08746 (13)0.35382 (14)0.69629 (3)0.0815 (3)
Cl41.26119 (11)0.22307 (19)0.75391 (3)0.0951 (4)
O30.9457 (3)0.2538 (3)0.76400 (7)0.0684 (8)
O40.9295 (3)0.0293 (3)0.73571 (7)0.0609 (7)
C240.9847 (3)0.1547 (4)0.74289 (8)0.0446 (7)
C251.1158 (3)0.1918 (4)0.72357 (9)0.0481 (8)
H251.136 (4)0.111 (4)0.7106 (9)0.058*
O2W0.9420 (3)0.7505 (3)0.69464 (6)0.0511 (6)
H2B0.924 (4)0.685 (3)0.7097 (8)0.061*
H2C0.946 (4)0.830 (3)0.7056 (9)0.061*
O3W0.8433 (2)0.5492 (3)0.74611 (6)0.0478 (5)
H3B0.878 (4)0.467 (3)0.7505 (10)0.057*
H3C0.762 (2)0.530 (4)0.7494 (10)0.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03492 (19)0.02875 (19)0.03115 (18)−0.00259 (14)0.00518 (13)0.00311 (14)
Cl1A0.085 (2)0.070 (2)0.071 (3)0.0185 (14)−0.0159 (12)0.0213 (11)
Cl2A0.073 (2)0.126 (4)0.0618 (12)0.044 (2)0.0070 (12)−0.0200 (18)
Cl1B0.057 (4)0.039 (3)0.217 (10)−0.003 (3)−0.046 (5)0.023 (5)
Cl2B0.078 (4)0.136 (9)0.075 (3)0.024 (5)0.022 (3)−0.024 (4)
O10.0390 (11)0.0322 (11)0.0552 (13)−0.0025 (9)0.0103 (9)−0.0024 (10)
O20.0464 (12)0.0340 (12)0.0569 (13)0.0046 (10)−0.0030 (11)−0.0003 (10)
O1W0.0436 (12)0.0581 (14)0.0352 (11)−0.0098 (11)0.0024 (10)−0.0060 (11)
N10.0392 (13)0.0310 (13)0.0363 (13)−0.0004 (10)0.0078 (10)0.0054 (10)
N20.0443 (15)0.0372 (15)0.0529 (17)−0.0025 (12)0.0223 (13)0.0032 (13)
N30.0381 (13)0.0335 (13)0.0338 (12)−0.0063 (11)−0.0001 (10)0.0037 (10)
N40.0485 (15)0.0453 (16)0.0346 (14)0.0015 (12)−0.0015 (12)0.0098 (12)
N50.0365 (12)0.0289 (13)0.0308 (12)−0.0034 (10)0.0065 (10)0.0005 (10)
N60.0528 (16)0.0266 (14)0.0429 (14)−0.0026 (12)0.0058 (12)0.0014 (12)
C10.0384 (17)0.069 (2)0.0433 (18)−0.0134 (17)0.0011 (14)0.0042 (17)
C20.048 (2)0.117 (4)0.054 (2)−0.020 (2)−0.0085 (18)0.020 (2)
C30.043 (2)0.117 (4)0.086 (3)−0.012 (2)−0.017 (2)0.027 (3)
C40.0322 (18)0.064 (2)0.087 (3)−0.0074 (16)0.0059 (18)0.013 (2)
C50.0346 (16)0.0293 (16)0.060 (2)−0.0075 (13)0.0093 (14)0.0026 (14)
C60.0340 (15)0.0343 (16)0.0415 (16)−0.0073 (12)0.0054 (12)0.0032 (13)
C70.0467 (18)0.0417 (18)0.0420 (17)−0.0009 (14)0.0138 (14)0.0073 (14)
C80.0416 (17)0.0400 (18)0.0405 (17)−0.0003 (14)0.0002 (14)−0.0006 (14)
C90.0414 (18)0.048 (2)0.057 (2)−0.0067 (15)0.0028 (15)−0.0142 (16)
C100.052 (2)0.0336 (18)0.072 (2)−0.0095 (15)0.0215 (18)−0.0107 (17)
C110.058 (2)0.0296 (16)0.053 (2)0.0030 (15)0.0230 (17)0.0041 (14)
C120.0381 (15)0.0333 (16)0.0334 (15)0.0015 (12)0.0087 (12)0.0015 (12)
C130.0348 (15)0.0303 (15)0.0345 (15)−0.0005 (12)0.0050 (12)0.0019 (12)
C140.0432 (17)0.0438 (19)0.0360 (16)−0.0045 (14)−0.0034 (13)0.0069 (13)
C150.059 (2)0.0405 (18)0.0392 (17)0.0015 (16)0.0032 (15)−0.0056 (15)
C160.084 (3)0.071 (3)0.0350 (18)0.008 (2)0.0089 (18)−0.0110 (18)
C170.076 (3)0.082 (3)0.0288 (17)0.002 (2)0.0124 (17)0.0102 (18)
C180.057 (2)0.053 (2)0.0421 (18)−0.0073 (17)0.0058 (16)0.0177 (17)
C190.0340 (14)0.0395 (17)0.0348 (15)−0.0016 (13)0.0032 (12)0.0042 (13)
C200.0293 (13)0.0349 (16)0.0290 (13)0.0001 (11)0.0026 (11)0.0011 (11)
C210.0438 (16)0.0368 (16)0.0331 (15)0.0012 (13)0.0092 (13)0.0016 (13)
C220.0435 (17)0.0339 (18)0.0427 (17)0.0025 (13)0.0090 (14)0.0057 (13)
C230.0475 (19)0.052 (2)0.055 (2)0.0138 (16)−0.0009 (16)−0.0027 (17)
Cl30.1008 (8)0.0806 (7)0.0658 (6)−0.0078 (6)0.0254 (6)0.0240 (6)
Cl40.0566 (6)0.1605 (13)0.0683 (7)0.0004 (7)0.0034 (5)−0.0003 (7)
O30.0913 (19)0.0503 (15)0.0697 (16)−0.0018 (13)0.0500 (15)−0.0059 (13)
O40.0587 (15)0.0485 (15)0.0781 (17)−0.0107 (12)0.0229 (13)−0.0105 (13)
C240.0498 (18)0.0414 (19)0.0445 (18)0.0068 (15)0.0166 (15)0.0040 (15)
C250.0519 (19)0.049 (2)0.0458 (18)−0.0027 (16)0.0185 (15)−0.0044 (15)
O2W0.0505 (13)0.0561 (16)0.0482 (14)−0.0009 (12)0.0135 (11)−0.0052 (11)
O3W0.0425 (13)0.0501 (14)0.0508 (13)0.0010 (11)0.0027 (11)−0.0071 (11)

Geometric parameters (Å, °)

Cu1—N31.991 (2)C5—C61.400 (4)
Cu1—N51.992 (2)C7—H6A0.94 (3)
Cu1—O11.993 (2)C8—C91.370 (4)
Cu1—N12.025 (2)C8—C131.391 (4)
Cu1—O1W2.314 (2)C8—H8A0.87 (3)
Cl1A—C231.789 (6)C9—C101.399 (5)
Cl2A—C231.773 (5)C9—H9A0.97 (4)
Cl1B—C231.720 (11)C10—C111.361 (5)
Cl2B—C231.784 (9)C10—H10A0.94 (4)
O1—C221.257 (3)C11—C121.403 (4)
O2—C221.235 (4)C11—H11A0.96 (3)
O1W—H1B0.808 (18)C12—C131.399 (4)
O1W—H1C0.803 (18)C14—H14A0.96 (3)
N1—C71.322 (4)C15—C161.374 (5)
N1—C61.398 (4)C15—C201.388 (4)
N2—C71.347 (4)C15—H15A0.91 (3)
N2—C51.378 (4)C16—C171.395 (6)
N2—H20.820 (17)C16—H16A0.94 (4)
N3—C141.315 (4)C17—C181.365 (6)
N3—C131.397 (4)C17—H17A0.93 (4)
N4—C141.336 (4)C18—C191.401 (4)
N4—C121.370 (4)C18—H18A0.90 (4)
N4—H40.856 (18)C19—C201.391 (4)
N5—C211.315 (4)C21—H21A0.94 (3)
N5—C201.401 (3)C22—C231.533 (4)
N6—C211.339 (4)C23—H230.93 (4)
N6—C191.373 (4)Cl3—C251.756 (4)
N6—H60.835 (18)Cl4—C251.766 (4)
C1—C21.380 (5)O3—C241.249 (4)
C1—C61.388 (4)O4—C241.235 (4)
C1—H1A1.01 (3)C24—C251.532 (4)
C2—C31.400 (6)C25—H250.88 (3)
C2—H2A1.00 (4)O2W—H2B0.835 (18)
C3—C41.364 (6)O2W—H2C0.809 (18)
C3—H3A0.891 (19)O3W—H3B0.802 (18)
C4—C51.387 (5)O3W—H3C0.814 (18)
C4—H4A0.95 (4)
N3—Cu1—N5176.38 (9)C10—C11—C12116.0 (3)
N3—Cu1—O186.92 (9)C10—C11—H11A124 (2)
N5—Cu1—O191.01 (9)C12—C11—H11A120 (2)
N3—Cu1—N189.13 (9)N4—C12—C13105.8 (2)
N5—Cu1—N192.43 (9)N4—C12—C11132.3 (3)
O1—Cu1—N1170.17 (9)C13—C12—C11121.8 (3)
N3—Cu1—O1W93.07 (9)C8—C13—N3131.0 (3)
N5—Cu1—O1W89.91 (9)C8—C13—C12120.8 (3)
O1—Cu1—O1W90.11 (9)N3—C13—C12108.2 (2)
N1—Cu1—O1W99.09 (9)N3—C14—N4113.0 (3)
C22—O1—Cu1113.46 (19)N3—C14—H14A123 (2)
Cu1—O1W—H1B127 (3)N4—C14—H14A123.4 (19)
Cu1—O1W—H1C118 (3)C16—C15—C20117.6 (3)
H1B—O1W—H1C105 (4)C16—C15—H15A120 (2)
C7—N1—C6105.6 (2)C20—C15—H15A122 (2)
C7—N1—Cu1123.9 (2)C15—C16—C17121.4 (4)
C6—N1—Cu1130.43 (18)C15—C16—H16A119 (2)
C7—N2—C5107.4 (3)C17—C16—H16A119 (2)
C7—N2—H2123 (2)C18—C17—C16122.0 (3)
C5—N2—H2129 (2)C18—C17—H17A121 (3)
C14—N3—C13105.3 (2)C16—C17—H17A117 (2)
C14—N3—Cu1127.5 (2)C17—C18—C19116.6 (3)
C13—N3—Cu1127.11 (19)C17—C18—H18A129 (2)
C14—N4—C12107.6 (3)C19—C18—H18A114 (2)
C14—N4—H4127 (3)N6—C19—C20106.2 (2)
C12—N4—H4126 (3)N6—C19—C18132.0 (3)
C21—N5—C20105.3 (2)C20—C19—C18121.8 (3)
C21—N5—Cu1123.29 (19)C15—C20—C19120.6 (3)
C20—N5—Cu1131.40 (18)C15—C20—N5131.1 (3)
C21—N6—C19107.3 (3)C19—C20—N5108.2 (2)
C21—N6—H6122 (2)N5—C21—N6113.0 (3)
C19—N6—H6129 (2)N5—C21—H21A124 (2)
C2—C1—C6117.0 (3)N6—C21—H21A123 (2)
C2—C1—H1A123.8 (19)O2—C22—O1126.9 (3)
C6—C1—H1A119.0 (19)O2—C22—C23119.6 (3)
C1—C2—C3121.4 (4)O1—C22—C23113.5 (3)
C1—C2—H2A118 (2)C22—C23—Cl1B113.9 (7)
C3—C2—H2A120 (2)C22—C23—Cl2A110.8 (3)
C4—C3—C2122.3 (4)Cl1B—C23—Cl2A95.2 (7)
C4—C3—H3A117 (3)C22—C23—Cl2B110.6 (4)
C2—C3—H3A120 (3)Cl1B—C23—Cl2B115.6 (5)
C3—C4—C5116.4 (3)Cl2A—C23—Cl2B24.5 (5)
C3—C4—H4A122 (2)C22—C23—Cl1A106.3 (3)
C5—C4—H4A121 (2)Cl1B—C23—Cl1A12.7 (10)
N2—C5—C4131.9 (3)Cl2A—C23—Cl1A107.8 (4)
N2—C5—C6105.9 (3)Cl2B—C23—Cl1A128.3 (8)
C4—C5—C6122.2 (3)C22—C23—H23115 (2)
C1—C6—N1130.9 (3)Cl1B—C23—H23106 (2)
C1—C6—C5120.7 (3)Cl2A—C23—H23115 (2)
N1—C6—C5108.4 (2)Cl2B—C23—H2395 (2)
N1—C7—N2112.6 (3)Cl1A—C23—H23101 (2)
N1—C7—H6A123 (2)O4—C24—O3127.3 (3)
N2—C7—H6A124 (2)O4—C24—C25115.8 (3)
C9—C8—C13117.2 (3)O3—C24—C25116.9 (3)
C9—C8—H8A121 (2)C24—C25—Cl3110.5 (2)
C13—C8—H8A122 (2)C24—C25—Cl4111.2 (2)
C8—C9—C10121.5 (3)Cl3—C25—Cl4109.9 (2)
C8—C9—H9A119 (2)C24—C25—H25108 (2)
C10—C9—H9A120 (2)Cl3—C25—H25110 (2)
C11—C10—C9122.7 (3)Cl4—C25—H25107 (2)
C11—C10—H10A118 (2)H2B—O2W—H2C104 (4)
C9—C10—H10A119 (2)H3B—O3W—H3C100 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1B···O3i0.81 (2)1.96 (2)2.763 (3)178 (4)
O1W—H1C···O2W0.80 (2)2.18 (2)2.949 (3)162 (3)
N2—H2···O2Wii0.82 (2)2.08 (2)2.873 (3)162 (3)
N4—H4···O3Wiii0.86 (2)2.00 (2)2.842 (3)166 (4)
N6—H6···O2iv0.84 (2)1.99 (2)2.826 (3)176 (3)
O2W—H2B···O3W0.84 (2)2.01 (2)2.832 (3)168 (4)
O2W—H2C···O4iv0.81 (2)2.08 (2)2.886 (3)172 (4)
O3W—H3B···O30.83 (2)2.01 (2)2.813 (4)164 (3)
O3W—H3C···O4i0.84 (2)1.93 (2)2.757 (3)170 (4)
C15—H15A···O20.91 (3)2.58 (3)3.416 (4)152 (3)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2115).

References

  • Barszcz, B., Glowiak, T., Jezierska, J. & Tomkiewicz, A. (2004). Polyhedron, 23, 1308–1316.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tyagi, S., Hathaway, B., Kremer, S., Stratemeier, H. & Reinen, D. (1984). J. Chem. Soc. Dalton Trans. pp. 2087–2091.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography