PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2387.
Published online 2009 September 9. doi:  10.1107/S1600536809034485
PMCID: PMC2970239

9-Meth­oxy-6a,11a-dimethyl-6a,11a-dihydro-6H-1-benzofuro[3,2-c]chromen-3-ol from Dalbergia oliveri

Abstract

The title compound, commonly known as (+)-(6aS,11aS)-medicarpin, C16H14O4, was isolated from Dalbergia oliveri and displays a rigid mol­ecule consisting of four fused rings. The benzofuran system is inclined at an angle of 76.49 (2)° with respect to the chroman unit. The compound exists as a polymeric chain arising from inter­molecular O—H(...)O bonding.

Related literature

For general background to (+)-(6aS,11aS)-medicarpin, see: Deesamer et al. (2007 [triangle]); Hargreaves et al. (1976 [triangle]). For a related structure, see: Aree et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2387-scheme1.jpg

Experimental

Crystal data

  • C16H14O4
  • M r = 270.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2387-efi1.jpg
  • a = 6.6289 (3) Å
  • b = 8.7963 (4) Å
  • c = 11.3150 (5) Å
  • β = 99.4820 (10)°
  • V = 650.76 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.40 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART diffractometer
  • Absorption correction: none
  • 4783 measured reflections
  • 1949 independent reflections
  • 2867 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.093
  • S = 1.09
  • 1949 reflections
  • 182 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034485/ng2631sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034485/ng2631Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge funding from the Royal Golden Jubilee PhD program (RGJ), the Center for Petroleum, Petrochemicals and Advanced Materials, the A1–B1 project and the Faculty of Science of Chulalongkorn University.

supplementary crystallographic information

Comment

Dalbergia Oliveri Gamble is widely found in Thailand and used in traditional Thai medicine for treament of chronic ulcer. One of major compositions of CH2Cl2 crude products extracted from the heartwoods of Dalbergia Oliveri (Deesamer et al., 2007) was (+)(6aS,11aS)-Medicarpin. It was identified as phytoalexin (Hargreaves et al., 1976).

The rigid molecule of the title compound consists of four fused rings adopts a bent-shaped conformation. The benzofuran ring system is inclined at the angle of 76.49 (2)° with respect to the chroman moiety. The tetrahydropyranyl group adopts an envelope conformation with atom C6 deviates from the plane by 0.4144 Å.

The compound exists as a polymeric chain arising from intermolecular O—H···O bonding.

Experimental

Four kilograms of dried and powder heartwoods of D. oliveri were extracted with hexane. The marc was then extracted with CH2Cl2, EtOAc and MeOH, respectively. The CH2Cl2 crudeextract was subjected to silica gel colume chromatography eluting with 60%EtOAc:Hexane to afford the title compound (3.92 g). The suitable single crystals of the title compound were recrystallized from acetone-water as colourless needle crystals.

m.p. 132.0–133.5°C; m/z: 270[M+]

The specific rotation of D3 as [α]D+ 223.1° (c 0.16 in acetone, at 20°C) indicated the absolute configuration to be (+)(6aS,11aS)-medicarpin.

1H-NMR (CDCl3): δ (p.p.m.) 3.55(1H,m,H-6a), 3.65 (1H, dd, J =10.9 and 10.9 Hz, H-6ax), 4.26 (1H, dd, J = 4.8, 10.9 Hz, H-6eq) and 5.23 (1H, d, J = 6.7 Hz, H-116a),

Refinement

All non-hydrogen atoms were anisotropically refined. The hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93Å (aromatic), 0.97Å (CH2) and 0.98Å (CH3), and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq (Caromatic), 1.5Ueq (CCH2), 1.5Ueq (CCH3) and 1.2Ueq (CO), respectively. In the structure, Friedel pairs [1949] were merged and the stereochemistry assumed from the specific rotation and the previously reported structure (Deesamer et al. 2007).

Figures

Fig. 1.
View of the title compound (50% probability displacement ellipsoids)
Fig. 2.
Packing diagram of a polymeric hydrogen bonding chain along the c axis.

Crystal data

C16H14O4Z = 2
Mr = 270.27F(000) = 284
Monoclinic, P21Dx = 1.379 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.6289 (3) ŵ = 0.10 mm1
b = 8.7963 (4) ÅT = 293 K
c = 11.3150 (5) ÅNeedle, colourless
β = 99.482 (1)°0.40 × 0.25 × 0.20 mm
V = 650.76 (5) Å3

Data collection

Bruker SMART diffractometerRint = 0.013
Radiation source: Moθmax = 30.4°, θmin = 1.8°
ω scansh = −7→9
4783 measured reflectionsk = −12→12
3198 independent reflectionsl = −15→13
1949 reflections with I > 2σ(I)

Refinement

Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034w = 1/[σ2(Fo2) + (0.0583P)2 + 0.0162P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.16 e Å3
1949 reflectionsΔρmin = −0.18 e Å3
182 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0057 (2)0.4390 (2)0.69102 (16)0.0414 (4)
H1−0.12520.3980.67360.05*
C20.0496 (3)0.5393 (3)0.78509 (16)0.0458 (4)
H2−0.05120.56640.82940.055*
C30.2455 (3)0.6001 (2)0.81356 (14)0.0413 (4)
C40.3960 (3)0.5576 (2)0.74813 (15)0.0399 (4)
H40.52780.59620.76780.048*
C4A0.3482 (2)0.45666 (19)0.65285 (14)0.0351 (3)
C60.4820 (3)0.2767 (2)0.53202 (17)0.0426 (4)
H6A0.49180.19640.59150.051*
H6B0.59280.26320.48670.051*
C6A0.2800 (2)0.26311 (19)0.44829 (15)0.0365 (3)
H6A10.26690.16010.41490.044*
C6B0.2447 (2)0.37674 (19)0.34730 (14)0.0338 (3)
C70.3662 (3)0.4270 (2)0.26630 (15)0.0393 (3)
H70.50070.39370.27230.047*
C80.2854 (3)0.5275 (2)0.17639 (16)0.0424 (4)
H80.3670.56330.1230.051*
C90.0829 (3)0.5752 (2)0.16556 (14)0.0388 (4)
C10−0.0419 (3)0.5288 (2)0.24674 (15)0.0374 (3)
H10−0.17640.56210.24090.045*
C10A0.0455 (2)0.43038 (19)0.33679 (13)0.0332 (3)
C11A0.0957 (2)0.29610 (19)0.51234 (15)0.0363 (3)
H11A0.03820.20020.53580.044*
C11B0.1513 (2)0.39649 (18)0.62068 (14)0.0343 (3)
C12−0.1997 (3)0.7026 (3)0.04448 (19)0.0579 (5)
H12A−0.22660.7714−0.02210.087*
H12B−0.24470.74740.1130.087*
H12C−0.27190.60910.02440.087*
O10.50439 (17)0.42138 (16)0.59175 (11)0.0436 (3)
O2−0.05777 (17)0.37602 (17)0.42345 (10)0.0401 (3)
O30.0152 (2)0.67276 (19)0.07158 (11)0.0518 (4)
O40.2992 (2)0.7012 (2)0.90549 (12)0.0550 (4)
H4A0.21020.70280.94790.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0296 (7)0.0524 (10)0.0410 (8)−0.0031 (7)0.0021 (6)0.0049 (8)
C20.0390 (8)0.0594 (11)0.0391 (8)0.0030 (8)0.0070 (7)0.0028 (8)
C30.0482 (9)0.0424 (9)0.0321 (7)−0.0012 (7)0.0026 (6)0.0048 (7)
C40.0368 (7)0.0448 (9)0.0372 (7)−0.0089 (6)0.0034 (6)0.0037 (7)
C4A0.0323 (7)0.0385 (8)0.0343 (7)−0.0031 (6)0.0045 (6)0.0059 (6)
C60.0361 (7)0.0445 (10)0.0460 (9)0.0054 (7)0.0030 (7)0.0002 (7)
C6A0.0372 (8)0.0295 (7)0.0414 (8)0.0010 (6)0.0022 (6)−0.0007 (6)
C6B0.0347 (7)0.0306 (7)0.0354 (7)0.0000 (6)0.0039 (6)−0.0039 (6)
C70.0361 (7)0.0411 (8)0.0420 (8)0.0012 (6)0.0102 (6)−0.0054 (7)
C80.0455 (9)0.0459 (9)0.0379 (8)−0.0007 (7)0.0130 (7)−0.0007 (7)
C90.0474 (9)0.0392 (9)0.0296 (7)0.0014 (7)0.0055 (6)−0.0027 (6)
C100.0359 (7)0.0423 (8)0.0331 (7)0.0048 (6)0.0035 (6)−0.0023 (6)
C10A0.0336 (7)0.0359 (7)0.0301 (6)−0.0033 (6)0.0049 (5)−0.0032 (6)
C11A0.0351 (7)0.0338 (8)0.0384 (8)−0.0057 (6)0.0010 (6)0.0056 (6)
C11B0.0310 (6)0.0360 (8)0.0342 (7)−0.0033 (6)0.0004 (5)0.0071 (6)
C120.0621 (12)0.0648 (13)0.0431 (9)0.0143 (11)−0.0022 (9)0.0089 (9)
O10.0305 (5)0.0527 (8)0.0482 (6)−0.0086 (5)0.0087 (4)−0.0075 (6)
O20.0299 (5)0.0536 (7)0.0358 (5)−0.0032 (5)0.0020 (4)0.0073 (5)
O30.0604 (8)0.0588 (9)0.0363 (6)0.0084 (7)0.0076 (5)0.0106 (6)
O40.0639 (9)0.0619 (9)0.0394 (7)−0.0071 (7)0.0088 (6)−0.0089 (6)

Geometric parameters (Å, °)

C1—C21.376 (3)C6B—C10A1.389 (2)
C1—C11B1.399 (2)C7—C81.387 (3)
C1—H10.93C7—H70.93
C2—C31.393 (3)C8—C91.393 (2)
C2—H20.93C8—H80.93
C3—O41.370 (2)C9—O31.382 (2)
C3—C41.388 (3)C9—C101.395 (2)
C4—C4A1.392 (2)C10—C10A1.389 (2)
C4—H40.93C10—H100.93
C4A—O11.372 (2)C10A—O21.3709 (19)
C4A—C11B1.400 (2)C11A—O21.484 (2)
C6—O11.437 (2)C11A—C11B1.507 (2)
C6—C6A1.512 (2)C11A—H11A0.98
C6—H6A0.97C12—O31.431 (3)
C6—H6B0.97C12—H12A0.96
C6A—C6B1.507 (2)C12—H12B0.96
C6A—C11A1.547 (2)C12—H12C0.96
C6A—H6A10.98O4—H4A0.82
C6B—C71.389 (2)
C2—C1—C11B122.26 (15)C6B—C7—H7120.3
C2—C1—H1118.9C7—C8—C9120.45 (16)
C11B—C1—H1118.9C7—C8—H8119.8
C1—C2—C3119.68 (17)C9—C8—H8119.8
C1—C2—H2120.2O3—C9—C8116.15 (16)
C3—C2—H2120.2O3—C9—C10122.38 (15)
O4—C3—C4117.40 (16)C8—C9—C10121.46 (16)
O4—C3—C2122.73 (17)C10A—C10—C9116.39 (15)
C4—C3—C2119.87 (17)C10A—C10—H10121.8
C3—C4—C4A119.56 (15)C9—C10—H10121.8
C3—C4—H4120.2O2—C10A—C6B113.57 (14)
C4A—C4—H4120.2O2—C10A—C10123.03 (14)
O1—C4A—C4116.13 (14)C6B—C10A—C10123.39 (15)
O1—C4A—C11B122.15 (14)O2—C11A—C11B108.81 (14)
C4—C4A—C11B121.72 (14)O2—C11A—C6A106.09 (13)
O1—C6—C6A112.14 (14)C11B—C11A—C6A112.62 (13)
O1—C6—H6A109.2O2—C11A—H11A109.7
C6A—C6—H6A109.2C11B—C11A—H11A109.7
O1—C6—H6B109.2C6A—C11A—H11A109.7
C6A—C6—H6B109.2C1—C11B—C4A116.87 (15)
H6A—C6—H6B107.9C1—C11B—C11A121.33 (14)
C6B—C6A—C6115.68 (14)C4A—C11B—C11A121.74 (14)
C6B—C6A—C11A101.24 (12)O3—C12—H12A109.5
C6—C6A—C11A112.20 (14)O3—C12—H12B109.5
C6B—C6A—H6A1109.1H12A—C12—H12B109.5
C6—C6A—H6A1109.1O3—C12—H12C109.5
C11A—C6A—H6A1109.1H12A—C12—H12C109.5
C7—C6B—C10A118.82 (15)H12B—C12—H12C109.5
C7—C6B—C6A132.64 (14)C4A—O1—C6114.15 (13)
C10A—C6B—C6A108.46 (13)C10A—O2—C11A106.43 (12)
C8—C7—C6B119.42 (15)C9—O3—C12117.65 (15)
C8—C7—H7120.3C3—O4—H4A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.822.072.882 (2)169

Symmetry codes: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2631).

References

  • Aree, T., Tip-pyang, S., Seesukphronrarak, S. & Chaichit, N. (2003). Acta Cryst. E59, o363–o365.
  • Bruker (2006). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deesamer, S., Kokpola, U., Chavasiria, W., Douillardb, S., Peyrotb, V., Vidalc, N. & Combesc, S. (2007). Tetrahedron, 63, 12986–12993.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hargreaves, J. A., Mansfield, J. W. & Coxon, D. T. (1976). Nature (London), 262, 318–319.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography