PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1163.
Published online 2009 September 5. doi:  10.1107/S1600536809034461
PMCID: PMC2970236

Diaqua­bis[2-(4-bromo­phen­yl)acetato]bis­(N 4,N 4-dimethyl­pyridin-4-amine)copper(II)

Abstract

In the title compound, [Cu(C8H6BrO2)2(C7H10N2)2(H2O)2], the CuII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-m1163-efi1.jpg) adopts a Jahn–Teller-distorted trans-CuN2O4 octa­hedral coordination, with the aqua O atoms in axially extended sites. An intra­molecular O—H(...)O hydrogen bond helps to establish the conformation and an inter­molecular O—H(...)O hydrogen bond is seen in the crystal packing.

Related literature

For background to coordination networks, see: Liu & Zhu (2004 [triangle]); Yang et al. (2004 [triangle]); You et al. (2004 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1163-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H6BrO2)2(C7H10N2)2(H2O)2]
  • M r = 771.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1163-efi2.jpg
  • a = 10.4792 (10) Å
  • b = 6.1059 (6) Å
  • c = 25.450 (2) Å
  • β = 100.958 (4)°
  • V = 1598.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.23 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.499, T max = 0.564
  • 8029 measured reflections
  • 2815 independent reflections
  • 2189 reflections with I > 2σ(I)
  • R int = 0.026
  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.099
  • S = 1.01
  • 2815 reflections
  • 198 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.71 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034461/hb5065sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034461/hb5065Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

supplementary crystallographic information

Comment

There has been much research interest in the acid and amine metal complexes due to their molecular architectures (Liu et al., 2004; Yang et al., 2004; You et al., 2004). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The CuII atom is six-coordinated by two N atoms from N,N-dimethylpyridin-4-amine, two O atoms from 2-(4-bromophenyl)acetic acid and two O atoms from the water molecules, forming a distorted octahedral coordination.

Experimental

A mixture of N,N-dimethylpyridin-4-amine (244 mg, 2 mmol), 2-(4-bromophenyl)acetic acid (428 mg, 2 mmol) and CuCl2.2H2O (169 mg, 1 mmol) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 7 d, green blocks of (I) were formed.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability displacement ellipsoids. Atoms with the suffix A are generated by the symmetry operation (1–x, 1–y, –z).

Crystal data

[Cu(C8H6BrO2)2(C7H10N2)2(H2O)2]F(000) = 782
Mr = 771.99Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.4792 (10) Åθ = 9–12°
b = 6.1059 (6) ŵ = 3.23 mm1
c = 25.450 (2) ÅT = 293 K
β = 100.958 (4)°Block, green
V = 1598.7 (3) Å30.25 × 0.20 × 0.20 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer2189 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 25.0°, θmin = 1.6°
ω/2θ scansh = −10→12
Absorption correction: ψ scan (North et al., 1968)k = −7→7
Tmin = 0.499, Tmax = 0.564l = −30→28
8029 measured reflections200 standard reflections every 3 reflections
2815 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0539P)2 + 0.7463P] where P = (Fo2 + 2Fc2)/3
2815 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.10163 (4)0.98365 (8)0.229572 (18)0.0870 (2)
C10.4910 (3)0.8264 (4)0.17361 (10)0.0366 (6)
C20.3209 (3)0.7210 (6)0.21980 (12)0.0567 (9)
H20.28540.61950.24020.068*
C30.4355 (3)0.6766 (5)0.20345 (11)0.0479 (8)
H30.47670.54330.21260.058*
C40.3099 (3)1.0674 (6)0.17612 (13)0.0525 (8)
H40.26691.19910.16680.063*
C50.4259 (3)1.0225 (5)0.15993 (13)0.0462 (8)
H50.46081.12500.13960.055*
C60.2591 (3)0.9156 (6)0.20593 (12)0.0492 (8)
C70.6186 (3)0.7783 (5)0.15678 (10)0.0411 (7)
H7A0.68070.72520.18730.049*
H7B0.65290.91210.14430.049*
C100.6013 (3)0.6071 (5)0.11224 (10)0.0354 (6)
C120.1011 (3)0.4106 (5)0.06736 (10)0.0354 (6)
C130.1512 (3)0.2454 (5)0.03830 (11)0.0410 (7)
H130.10830.11170.03240.049*
C140.2815 (3)0.6273 (4)0.05081 (11)0.0373 (6)
H140.32540.76050.05480.045*
C150.2618 (3)0.2798 (5)0.01872 (11)0.0392 (7)
H150.29180.16580.00010.047*
C160.1726 (3)0.6080 (5)0.07202 (11)0.0393 (7)
H160.14470.72640.08990.047*
C17−0.0511 (4)0.5523 (6)0.12039 (17)0.0694 (11)
H17A0.02060.61430.14500.104*
H17B−0.11260.49180.13990.104*
H17C−0.09240.66440.09660.104*
C19−0.0777 (3)0.1795 (6)0.08259 (15)0.0640 (10)
H19A−0.11670.16220.04550.096*
H19B−0.14450.18410.10370.096*
H19C−0.02070.05830.09390.096*
Cu10.50000.50000.00000.03234 (15)
N1−0.0042 (2)0.3814 (4)0.08968 (10)0.0462 (6)
N20.3302 (2)0.4658 (3)0.02439 (9)0.0331 (5)
O10.6222 (2)0.4143 (4)0.12444 (8)0.0570 (6)
O20.56545 (17)0.6809 (3)0.06509 (7)0.0372 (4)
O30.58520 (19)0.1416 (3)0.03998 (7)0.0469 (5)
H3B0.55910.00500.04630.056*
H3A0.60110.21050.07270.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0564 (3)0.1343 (5)0.0770 (3)−0.0039 (2)0.0294 (2)−0.0350 (3)
C10.0497 (17)0.0354 (15)0.0256 (13)−0.0051 (13)0.0092 (12)−0.0073 (11)
C20.069 (2)0.065 (2)0.0416 (17)−0.0128 (19)0.0260 (16)0.0034 (15)
C30.065 (2)0.0413 (17)0.0386 (15)0.0014 (16)0.0123 (15)0.0054 (13)
C40.061 (2)0.0482 (18)0.0505 (18)0.0102 (17)0.0149 (16)−0.0055 (15)
C50.060 (2)0.0394 (18)0.0421 (16)−0.0025 (15)0.0167 (15)−0.0010 (13)
C60.0488 (18)0.064 (2)0.0388 (16)−0.0027 (17)0.0171 (14)−0.0152 (15)
C70.0470 (17)0.0440 (17)0.0323 (14)−0.0046 (14)0.0080 (12)−0.0083 (12)
C100.0345 (15)0.0392 (17)0.0358 (15)−0.0073 (13)0.0155 (12)−0.0071 (12)
C120.0330 (14)0.0396 (15)0.0348 (14)−0.0011 (13)0.0093 (12)0.0013 (12)
C130.0413 (16)0.0349 (15)0.0505 (16)−0.0085 (13)0.0177 (13)−0.0096 (13)
C140.0407 (15)0.0298 (15)0.0447 (16)−0.0029 (12)0.0164 (13)−0.0063 (12)
C150.0437 (16)0.0334 (15)0.0452 (16)−0.0045 (13)0.0199 (13)−0.0103 (12)
C160.0405 (16)0.0337 (16)0.0477 (16)0.0018 (13)0.0188 (13)−0.0063 (13)
C170.062 (2)0.073 (2)0.087 (3)−0.0086 (19)0.048 (2)−0.017 (2)
C190.054 (2)0.067 (2)0.079 (2)−0.0204 (18)0.0334 (18)−0.0083 (19)
Cu10.0321 (3)0.0372 (3)0.0304 (3)−0.0056 (2)0.01259 (19)−0.00735 (18)
N10.0408 (14)0.0468 (15)0.0572 (15)−0.0077 (12)0.0249 (12)−0.0071 (12)
N20.0355 (12)0.0318 (13)0.0351 (12)−0.0014 (10)0.0143 (10)−0.0048 (9)
O10.0861 (18)0.0371 (12)0.0473 (12)−0.0003 (12)0.0116 (11)−0.0025 (10)
O20.0436 (11)0.0381 (11)0.0317 (10)−0.0060 (9)0.0114 (8)−0.0075 (8)
O30.0602 (13)0.0386 (11)0.0438 (11)−0.0036 (10)0.0146 (9)−0.0017 (9)

Geometric parameters (Å, °)

Br1—C61.906 (3)C14—N21.347 (3)
C1—C31.386 (4)C14—C161.357 (4)
C1—C51.389 (4)C14—H140.9300
C1—C71.508 (4)C15—N21.336 (3)
C2—C61.367 (5)C15—H150.9300
C2—C31.371 (4)C16—H160.9300
C2—H20.9300C17—N11.445 (4)
C3—H30.9300C17—H17A0.9600
C4—C61.368 (5)C17—H17B0.9600
C4—C51.384 (5)C17—H17C0.9600
C4—H40.9300C19—N11.447 (4)
C5—H50.9300C19—H19A0.9600
C7—C101.527 (4)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700Cu1—O2i2.0006 (17)
C10—O11.226 (4)Cu1—O22.0006 (17)
C10—O21.270 (3)Cu1—N22.004 (2)
C12—N11.345 (3)Cu1—N2i2.004 (2)
C12—C131.410 (4)Cu1—O32.5052 (19)
C12—C161.412 (4)Cu1—O3i2.5052 (19)
C13—C151.362 (4)O3—H3B0.9018
C13—H130.9300O3—H3A0.9200
C3—C1—C5117.9 (3)C14—C16—C12120.9 (3)
C3—C1—C7121.0 (3)C14—C16—H16119.6
C5—C1—C7121.1 (3)C12—C16—H16119.6
C6—C2—C3119.5 (3)N1—C17—H17A109.5
C6—C2—H2120.2N1—C17—H17B109.5
C3—C2—H2120.2H17A—C17—H17B109.5
C2—C3—C1121.3 (3)N1—C17—H17C109.5
C2—C3—H3119.4H17A—C17—H17C109.5
C1—C3—H3119.4H17B—C17—H17C109.5
C6—C4—C5119.2 (3)N1—C19—H19A109.5
C6—C4—H4120.4N1—C19—H19B109.5
C5—C4—H4120.4H19A—C19—H19B109.5
C4—C5—C1120.9 (3)N1—C19—H19C109.5
C4—C5—H5119.5H19A—C19—H19C109.5
C1—C5—H5119.5H19B—C19—H19C109.5
C2—C6—C4121.1 (3)O2i—Cu1—O2180.00 (6)
C2—C6—Br1120.3 (3)O2i—Cu1—N290.81 (8)
C4—C6—Br1118.6 (3)O2—Cu1—N289.19 (8)
C1—C7—C10111.0 (2)O2i—Cu1—N2i89.19 (8)
C1—C7—H7A109.4O2—Cu1—N2i90.81 (8)
C10—C7—H7A109.4N2—Cu1—N2i180.00 (11)
C1—C7—H7B109.4O2—Cu1—O396.11 (7)
C10—C7—H7B109.4O2—Cu1—O3i83.89 (7)
H7A—C7—H7B108.0O3—Cu1—N292.98 (7)
O1—C10—O2125.9 (2)O3—Cu1—O2i83.89 (7)
O1—C10—C7118.6 (2)O3—Cu1—O3i180.00 (7)
O2—C10—C7115.5 (2)O3—Cu1—N2i87.02 (7)
N1—C12—C13122.9 (3)N2—Cu1—O3i87.02 (7)
N1—C12—C16122.8 (3)O2i—Cu1—O3i96.11 (7)
C13—C12—C16114.2 (2)O3i—Cu1—N2i92.98 (7)
C15—C13—C12120.6 (3)C12—N1—C17121.5 (3)
C15—C13—H13119.7C12—N1—C19121.4 (3)
C12—C13—H13119.7C17—N1—C19117.1 (3)
N2—C14—C16124.2 (3)C15—N2—C14115.4 (2)
N2—C14—H14117.9C15—N2—Cu1123.04 (18)
C16—C14—H14117.9C14—N2—Cu1121.40 (18)
N2—C15—C13124.6 (2)C10—O2—Cu1125.44 (18)
N2—C15—H15117.7H3B—O3—H3A105.6
C13—C15—H15117.7

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3B···O2ii0.902.032.901 (3)161
O3—H3A···O10.921.792.688 (3)163

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5065).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Liu, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, m1866–m1868.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213–m1214.
  • You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1863–m1865.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography