PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2489.
Published online 2009 September 19. doi:  10.1107/S1600536809036964
PMCID: PMC2970230

(E)-N′-(4-Bromo­benzyl­idene)-3,4-dihydroxy­benzohydrazide monohydrate

Abstract

In the title compound, C14H11BrN2O3·H2O, the dihedral angle between the two benzene rings of the Schiff base is 22.7 (2)° and an intra­molecular O—H(...)O hydrogen bond is observed. In the crystal, mol­ecules are linked into layers parallel to the ab plane by O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For the synthesis of Schiff base compounds from the reaction of aldehydes with primary amines, see: Herrick et al. (2008 [triangle]); Suresh et al. (2007 [triangle]). For a related structure, see: Ma et al. (2008 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2489-scheme1.jpg

Experimental

Crystal data

  • C14H11BrN2O3·H2O
  • M r = 353.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2489-efi1.jpg
  • a = 7.8119 (5) Å
  • b = 13.8504 (9) Å
  • c = 13.0764 (9) Å
  • β = 91.708 (1)°
  • V = 1414.21 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.92 mm−1
  • T = 295 K
  • 0.18 × 0.16 × 0.15 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan SADABS (Sheldrick, 1996 [triangle]) T min = 0.621, T max = 0.668
  • 7384 measured reflections
  • 2511 independent reflections
  • 1810 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.116
  • S = 1.02
  • 2511 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.76 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036964/hb5092sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036964/hb5092Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff base compounds can be easily synthesized from the reaction of aldehydes with primary amines (Herrick et al., 2008; Suresh et al., 2007). In this paper, the crystal structure of a new Schiff base compound derived from the condensation reaction of 3,4-dihydroxybenzohydrazide with 4-bromobenzaldehyde is reported.

The Schiff base molecule of the title compound, (I), displays a trans configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those in the related compound 3,4-Dihydroxy-N'-(2-hydroxybenzylidene)benzohydrazide- methanol-water (2/1/3) (Ma et al., 2008). The dihedral angle between the two benzene rings in (I) is 22.7 (2)°. An intramolecular O—H···O hydrogen bond is observed. In the crystal structure the water molecule links three symmetry related molecules through O—H···O and O—H···N hydrogen bonds (Table 1). Together with two further intermolecular O—H···O hydrogen bonds, layers parallel to the ab plane are formed (Fig. 2).

Experimental

4-Bromosalicylaldehyde (0.1 mmol, 15.6 mg) and 3,4-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Light yellow blokcs of (I) were formed by gradual evaporation of the solvent over a period of nine days at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions (C—H = 0.93 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å) and refned as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
Fig. 2.
The molecular packing of (I). Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.

Crystal data

C14H11BrN2O3·H2OF(000) = 712
Mr = 353.17Dx = 1.659 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2538 reflections
a = 7.8119 (5) Åθ = 2.7–24.2°
b = 13.8504 (9) ŵ = 2.92 mm1
c = 13.0764 (9) ÅT = 295 K
β = 91.708 (1)°Block, light yellow
V = 1414.21 (16) Å30.18 × 0.16 × 0.15 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer2511 independent reflections
Radiation source: fine-focus sealed tube1810 reflections with I > 2σ(I)
graphiteRint = 0.096
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan SADABS (Sheldrick, 1996)h = −9→9
Tmin = 0.621, Tmax = 0.668k = −12→16
7384 measured reflectionsl = −12→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.053P)2 + 0.0453P] where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.08523 (6)0.16874 (3)0.20512 (4)0.0710 (2)
O10.2102 (4)1.04968 (18)−0.1288 (2)0.0561 (7)
H10.24961.0583−0.18550.084*
O20.4375 (4)0.94026 (17)−0.23369 (19)0.0590 (8)
H20.48820.8962−0.26170.089*
O30.4997 (3)0.72271 (16)0.16417 (17)0.0439 (6)
O40.4061 (3)0.12989 (17)0.70360 (19)0.0500 (7)
H150.43610.16600.75360.075*
H160.46220.07870.71720.075*
N10.5896 (3)0.66104 (17)0.0155 (2)0.0349 (6)
H1A0.59320.6652−0.05000.042*
N20.6628 (3)0.58384 (19)0.0659 (2)0.0364 (7)
C10.4411 (4)0.8144 (2)0.0139 (2)0.0310 (7)
C20.4779 (4)0.8365 (2)−0.0866 (3)0.0343 (8)
H2A0.55450.7982−0.12150.041*
C30.4030 (5)0.9141 (2)−0.1350 (3)0.0379 (8)
C40.2885 (4)0.9734 (2)−0.0836 (3)0.0375 (8)
C50.2535 (4)0.9517 (2)0.0159 (3)0.0435 (9)
H50.17700.99010.05080.052*
C60.3290 (4)0.8743 (2)0.0652 (3)0.0378 (8)
H60.30500.86190.13310.045*
C70.5118 (4)0.7306 (2)0.0699 (3)0.0335 (7)
C80.7358 (4)0.5211 (2)0.0103 (3)0.0357 (8)
H80.73390.5285−0.06040.043*
C90.8220 (4)0.4381 (2)0.0570 (3)0.0344 (8)
C100.8858 (4)0.3655 (2)−0.0043 (3)0.0419 (9)
H100.87420.3708−0.07500.050*
C110.9666 (4)0.2852 (2)0.0382 (3)0.0456 (9)
H111.00850.2367−0.00340.055*
C120.9835 (4)0.2786 (2)0.1423 (3)0.0423 (9)
C130.9267 (5)0.3516 (3)0.2044 (3)0.0454 (9)
H130.94350.34740.27500.054*
C140.8455 (4)0.4301 (2)0.1623 (3)0.0412 (8)
H140.80560.47860.20450.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0630 (3)0.0516 (3)0.0988 (5)0.02020 (19)0.0116 (3)0.0259 (2)
O10.0711 (18)0.0459 (15)0.0516 (17)0.0227 (13)0.0093 (14)0.0098 (13)
O20.114 (2)0.0323 (13)0.0316 (14)0.0185 (14)0.0206 (14)0.0067 (11)
O30.0707 (16)0.0354 (13)0.0260 (14)0.0040 (11)0.0064 (12)−0.0001 (10)
O40.0816 (18)0.0311 (12)0.0372 (14)0.0045 (12)−0.0024 (13)0.0006 (11)
N10.0483 (16)0.0296 (14)0.0268 (15)0.0035 (12)0.0031 (12)0.0025 (12)
N20.0420 (16)0.0286 (14)0.0386 (17)0.0000 (12)0.0029 (13)0.0034 (13)
C10.0393 (17)0.0260 (15)0.0277 (18)−0.0034 (13)0.0021 (14)−0.0021 (14)
C20.0491 (19)0.0243 (16)0.0302 (19)0.0000 (14)0.0104 (15)−0.0018 (14)
C30.058 (2)0.0268 (17)0.0290 (19)−0.0029 (15)0.0086 (16)0.0006 (15)
C40.0461 (19)0.0287 (17)0.038 (2)0.0047 (15)0.0014 (16)−0.0007 (15)
C50.050 (2)0.040 (2)0.042 (2)0.0093 (16)0.0136 (17)−0.0038 (17)
C60.048 (2)0.0382 (18)0.0273 (18)0.0036 (16)0.0103 (15)0.0009 (15)
C70.0406 (18)0.0287 (17)0.031 (2)−0.0053 (14)0.0025 (15)−0.0014 (15)
C80.0424 (18)0.0322 (18)0.0326 (19)−0.0023 (15)0.0033 (15)0.0000 (15)
C90.0321 (16)0.0298 (17)0.042 (2)−0.0036 (13)0.0041 (15)0.0006 (15)
C100.046 (2)0.0390 (19)0.041 (2)−0.0008 (16)0.0039 (17)−0.0066 (17)
C110.0411 (19)0.0340 (19)0.062 (3)0.0026 (15)0.0049 (18)−0.0069 (18)
C120.0335 (18)0.0343 (19)0.059 (3)0.0005 (14)0.0078 (17)0.0066 (18)
C130.047 (2)0.052 (2)0.037 (2)0.0060 (17)0.0031 (17)0.0067 (18)
C140.046 (2)0.0391 (19)0.039 (2)0.0044 (16)0.0041 (16)−0.0044 (16)

Geometric parameters (Å, °)

Br1—C121.893 (3)C3—C41.402 (5)
O1—C41.348 (4)C4—C51.372 (5)
O1—H10.8200C5—C61.374 (5)
O2—C31.374 (4)C5—H50.9300
O2—H20.8200C6—H60.9300
O3—C71.244 (4)C8—C91.458 (5)
O4—H150.8499C8—H80.9300
O4—H160.8500C9—C101.387 (5)
N1—C71.353 (4)C9—C141.387 (5)
N1—N21.372 (4)C10—C111.387 (5)
N1—H1A0.8600C10—H100.9300
N2—C81.277 (4)C11—C121.367 (5)
C1—C21.387 (5)C11—H110.9300
C1—C61.393 (4)C12—C131.378 (5)
C1—C71.471 (4)C13—C141.367 (5)
C2—C31.369 (5)C13—H130.9300
C2—H2A0.9300C14—H140.9300
C4—O1—H1109.5O3—C7—N1120.5 (3)
C3—O2—H2109.5O3—C7—C1121.6 (3)
H15—O4—H16101.6N1—C7—C1117.9 (3)
C7—N1—N2119.3 (3)N2—C8—C9120.4 (3)
C7—N1—H1A120.3N2—C8—H8119.8
N2—N1—H1A120.3C9—C8—H8119.8
C8—N2—N1116.3 (3)C10—C9—C14118.4 (3)
C2—C1—C6118.4 (3)C10—C9—C8119.9 (3)
C2—C1—C7124.1 (3)C14—C9—C8121.6 (3)
C6—C1—C7117.5 (3)C11—C10—C9121.1 (3)
C3—C2—C1120.9 (3)C11—C10—H10119.4
C3—C2—H2A119.5C9—C10—H10119.4
C1—C2—H2A119.5C12—C11—C10118.8 (3)
C2—C3—O2123.3 (3)C12—C11—H11120.6
C2—C3—C4120.6 (3)C10—C11—H11120.6
O2—C3—C4116.1 (3)C11—C12—C13121.0 (3)
O1—C4—C5119.2 (3)C11—C12—Br1120.8 (3)
O1—C4—C3122.5 (3)C13—C12—Br1118.2 (3)
C5—C4—C3118.3 (3)C14—C13—C12119.9 (3)
C4—C5—C6121.4 (3)C14—C13—H13120.0
C4—C5—H5119.3C12—C13—H13120.0
C6—C5—H5119.3C13—C14—C9120.7 (3)
C5—C6—C1120.4 (3)C13—C14—H14119.7
C5—C6—H6119.8C9—C14—H14119.7
C1—C6—H6119.8
C7—N1—N2—C8−179.3 (3)C6—C1—C7—O3−13.4 (5)
C6—C1—C2—C3−1.4 (5)C2—C1—C7—N1−13.4 (5)
C7—C1—C2—C3177.9 (3)C6—C1—C7—N1165.9 (3)
C1—C2—C3—O2178.7 (3)N1—N2—C8—C9178.0 (3)
C1—C2—C3—C40.6 (5)N2—C8—C9—C10173.5 (3)
C2—C3—C4—O1−179.1 (3)N2—C8—C9—C14−7.8 (5)
O2—C3—C4—O12.7 (5)C14—C9—C10—C112.0 (5)
C2—C3—C4—C5−0.2 (5)C8—C9—C10—C11−179.3 (3)
O2—C3—C4—C5−178.4 (3)C9—C10—C11—C12−0.3 (5)
O1—C4—C5—C6179.5 (3)C10—C11—C12—C13−2.1 (5)
C3—C4—C5—C60.5 (5)C10—C11—C12—Br1177.7 (2)
C4—C5—C6—C1−1.4 (5)C11—C12—C13—C142.8 (5)
C2—C1—C6—C51.8 (5)Br1—C12—C13—C14−177.0 (3)
C7—C1—C6—C5−177.5 (3)C12—C13—C14—C9−1.1 (5)
N2—N1—C7—O3−3.3 (5)C10—C9—C14—C13−1.3 (5)
N2—N1—C7—C1177.5 (2)C8—C9—C14—C13−180.0 (3)
C2—C1—C7—O3167.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.302.734 (3)114
O4—H16···O2i0.852.032.760 (3)143
O4—H15···O3ii0.851.942.761 (3)163
O2—H2···O3iii0.821.912.675 (3)154
O1—H1···O4iv0.822.162.929 (4)155
N1—H1A···O4v0.862.072.898 (4)162

Symmetry codes: (i) x, y−1, z+1; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2; (iv) x, y+1, z−1; (v) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5092).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Herrick, R. S., Ziegler, C. J., Precopio, M., Crandall, K., Shaw, J. & Jarret, R. M. (2008). J. Organomet. Chem.693, 619–624.
  • Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Suresh, P., Srimurugan, S. & Pati, H. N. (2007). Chem. Lett.36, 1332–1333.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography