PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2519.
Published online 2009 September 26. doi:  10.1107/S160053680903743X
PMCID: PMC2970223

1-(1,3-Benzothia­zol-2-yl)-3-(4-chloro­benzo­yl)thio­urea

Abstract

The title compound, C15H10ClN3OS2, adopts a cis–trans configuration across the thio­urea C—N bonds with respect to the positions of the benzothia­zole and 4-chloro­benzoyl groups relative to thiono S atom. An intra­molecular N—H(...)O hydrogen bond is present. In the crystal structure, mol­ecules are linked by a weak inter­molecular N—H(...)S hydrogen bond, forming centrosymmetric dimers.

Related literature

For the biological activity of thia­diazo­les, see: Shukla & Srivastava (2008 [triangle]); Göblyös et al. (2005 [triangle]); Terzioglu & Gürsoy (2003 [triangle]); Rana et al. (2008 [triangle]). For their potential as insecticides and fungicides, see: Jian et al. (2005 [triangle]). For C—S and C—O bond lengths, see: Saeed & Flörke (2006 [triangle]); Yamin & Yusof (2003 [triangle]). For the structures of other benzoyl­thio­urea derivatives, see: Dillen et al. (2006 [triangle]); Khawar Rauf et al. (2006 [triangle]); Weiqun et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2519-scheme1.jpg

Experimental

Crystal data

  • C15H10ClN3OS2
  • M r = 347.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2519-efi1.jpg
  • a = 11.726 (2) Å
  • b = 17.934 (4) Å
  • c = 7.2617 (16) Å
  • β = 96.848 (4)°
  • V = 1516.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 298 K
  • 0.55 × 0.42 × 0.40 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.759, T max = 0.816
  • 11030 measured reflections
  • 3772 independent reflections
  • 2891 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.109
  • S = 1.05
  • 3772 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903743X/vm2003sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903743X/vm2003Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Malaysian Government, Universiti Kebangsaan Malaysia, Universiti Malaysia Terengganu and the Ministry of Science, Technology and Innovation for the research grants e-science fund 52022.

supplementary crystallographic information

Comment

For the past few decades, heterocycles featuring thiadiazoles which consist of sulfur and nitrogen have been developed consistenly to act as drugs as well as to play an active role in numerous biological activities (Shukla & Srivastava 2008; Göblyös et al. 2005). These derivatives have been shown to exhibit anticancer, antitubercular and anticonvulsant activities (Terzioglu & Gürsoy 2003; Rana et al. 2008). In agriculture, thiadiazole derivatives have a potential as insecticide and fungicide (Jian et al. 2005). The title compound (I), adopts cis-trans configuration with respect to the positions of the benzothiazole and 4-chlorobenzoyl groups relative to the thiono S atom, across their C—N bonds (Fig 1). The central carbonyl thiourea moiety (S1/C8/N1/N2/C7/O1), phenyl ring (C1—C6) and benzothiazole (S2/N3/C9—C15) groups are all planar, with a maximum deviation of 0.021 (1)Å for atom C10 from the least-squares plane. The central carbonyl thiourea fragment makes dihedral angles of 24.09 (7)° and 4.58 (4)° with the phenyl ring and benzothiazole group, respectively. The two aryl rings are inclined to each other at an angle of 28.42 (8)°. The C8—S1 and C7—O1 bond length show the expected double bond character of 1.6570 (17)Å and 1.2245 (19)Å (Saeed & Flörke 2006; Yamin & Yusof 2003). The N1—C8 is longer than N2—C8 by 0.045 Å, similar to other benzoylthiourea derivatives (Dillen et al. 2006; Khawar Rauf et al. 2006) which is probably due to the intramolecular hydrogen bonding interaction (Weiqun et al. 2004).

There is an intramolecular hydrogen bond, N2—H2···O1 forming a pseudo-six-membered ring, O1···H2—N2—C8—N1—C7—O1 (Fig.1). In the crystal structure, the molecules are linked by a weak intermolecular interaction N1—H1A···S1 (symmetry codes as in Table 1) forming dimers (Fig. 2).

Experimental

To a stirring acetone solution (75 ml) of 4-chlorobenzoyl chloride (2.0 g, 11.4 mmol) and ammoniumthiocyanate (0.87 g, 11.4 mmol), 2-aminobenzothiazole (1.17 g, 11.4 mmol) in 40 ml of acetone was added dropwise. The solution mixture was put at reflux for 1 h. The resulting solution was poured into a beaker containing some ice blocks. The light yellow precipitate was filtered off and washed with distilled water and cold ethanol before dried under vacuum. Good quality crystals were obtained by recrystallization from DMSO.

Refinement

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms with C—H = 0.93Å and N—H = 0.86Å with Uiso(H)= 1.2 (CH and NH).

Figures

Fig. 1.
The molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
Fig. 2.
Packing diagram of compound (I), viewed down the b axis. The dashed lines denote the N—H···S hydrogen bond.

Crystal data

C15H10ClN3OS2F(000) = 712
Mr = 347.83Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 906 reflections
a = 11.726 (2) Åθ = 1.8–28.3°
b = 17.934 (4) ŵ = 0.53 mm1
c = 7.2617 (16) ÅT = 298 K
β = 96.848 (4)°Block, light yellow
V = 1516.1 (6) Å30.55 × 0.42 × 0.40 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer3772 independent reflections
Radiation source: fine-focus sealed tube2891 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 83.66 pixels mm-1θmax = 28.3°, θmin = 1.8°
ω scansh = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2000)k = −23→20
Tmin = 0.759, Tmax = 0.816l = −8→9
11030 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0606P)2 + 0.1737P] where P = (Fo2 + 2Fc2)/3
3772 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.84415 (5)0.83795 (3)0.39677 (9)0.07175 (19)
S10.49665 (4)0.38829 (3)0.39437 (8)0.05844 (16)
S20.58802 (4)0.22891 (2)0.41252 (6)0.04563 (13)
O10.86117 (10)0.46684 (7)0.3645 (2)0.0549 (3)
N30.80322 (12)0.24282 (8)0.3637 (2)0.0474 (3)
N10.67029 (11)0.48112 (8)0.3894 (2)0.0450 (3)
H1A0.61830.51410.40050.054*
N20.71709 (11)0.35696 (7)0.3786 (2)0.0434 (3)
H2A0.78420.37500.36950.052*
C10.70106 (14)0.63867 (10)0.3181 (3)0.0491 (4)
H10.62910.61940.27540.059*
C20.71738 (15)0.71472 (10)0.3236 (3)0.0520 (4)
H20.65700.74690.28550.062*
C30.82429 (16)0.74219 (10)0.3862 (3)0.0489 (4)
C40.91544 (15)0.69616 (11)0.4420 (3)0.0551 (5)
H40.98730.71590.48320.066*
C50.89835 (14)0.61965 (10)0.4358 (3)0.0507 (4)
H50.95940.58770.47220.061*
C60.79104 (13)0.59043 (9)0.3759 (2)0.0418 (4)
C70.77928 (13)0.50832 (10)0.3753 (2)0.0420 (4)
C80.63429 (13)0.40769 (9)0.3881 (2)0.0417 (4)
C90.71104 (14)0.27973 (9)0.3813 (2)0.0404 (4)
C100.78156 (15)0.16707 (10)0.3728 (2)0.0459 (4)
C110.86167 (18)0.11049 (11)0.3579 (3)0.0612 (5)
H110.93720.12200.34210.073*
C120.82695 (19)0.03736 (12)0.3672 (3)0.0685 (6)
H120.8797−0.00070.35680.082*
C130.7148 (2)0.01951 (11)0.3915 (3)0.0657 (6)
H130.6932−0.03030.39640.079*
C140.63489 (17)0.07448 (10)0.4087 (3)0.0574 (5)
H140.55990.06240.42660.069*
C150.66891 (15)0.14852 (9)0.3988 (2)0.0447 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0907 (4)0.0384 (3)0.0882 (4)−0.0049 (2)0.0194 (3)−0.0016 (2)
S10.0365 (2)0.0450 (3)0.0947 (4)−0.00093 (18)0.0117 (2)−0.0050 (2)
S20.0387 (2)0.0442 (2)0.0534 (3)−0.00318 (16)0.00325 (18)0.00143 (18)
O10.0381 (6)0.0427 (7)0.0842 (10)0.0047 (5)0.0088 (6)−0.0007 (6)
N30.0428 (7)0.0402 (8)0.0602 (10)−0.0005 (6)0.0099 (7)−0.0024 (6)
N10.0356 (7)0.0381 (7)0.0618 (9)0.0029 (5)0.0076 (6)−0.0010 (6)
N20.0352 (6)0.0381 (7)0.0567 (9)−0.0015 (5)0.0045 (6)−0.0020 (6)
C10.0366 (8)0.0454 (9)0.0649 (12)0.0015 (7)0.0046 (8)0.0055 (8)
C20.0449 (9)0.0453 (10)0.0664 (12)0.0083 (7)0.0085 (8)0.0083 (8)
C30.0570 (10)0.0360 (8)0.0557 (11)−0.0018 (7)0.0150 (8)0.0002 (7)
C40.0428 (9)0.0491 (10)0.0727 (13)−0.0069 (8)0.0042 (8)−0.0027 (9)
C50.0361 (8)0.0456 (10)0.0696 (12)0.0023 (7)0.0037 (8)0.0028 (8)
C60.0355 (7)0.0401 (9)0.0503 (10)0.0012 (6)0.0071 (7)0.0008 (7)
C70.0353 (7)0.0438 (9)0.0469 (9)0.0007 (6)0.0043 (7)0.0009 (7)
C80.0391 (8)0.0404 (8)0.0455 (9)0.0001 (6)0.0043 (7)−0.0014 (7)
C90.0387 (8)0.0399 (8)0.0419 (9)−0.0021 (6)0.0018 (6)−0.0021 (6)
C100.0486 (9)0.0411 (9)0.0476 (10)0.0009 (7)0.0034 (7)−0.0031 (7)
C110.0588 (11)0.0462 (10)0.0798 (14)0.0061 (8)0.0135 (10)−0.0040 (9)
C120.0754 (14)0.0442 (11)0.0844 (16)0.0115 (10)0.0034 (12)−0.0080 (10)
C130.0804 (15)0.0391 (10)0.0735 (14)−0.0046 (10)−0.0076 (11)0.0004 (9)
C140.0605 (11)0.0462 (10)0.0628 (12)−0.0098 (9)−0.0035 (9)0.0046 (8)
C150.0482 (9)0.0414 (9)0.0427 (9)−0.0020 (7)−0.0018 (7)0.0006 (7)

Geometric parameters (Å, °)

Cl1—C31.7334 (19)C2—H20.9300
S1—C81.6570 (17)C3—C41.373 (3)
S2—C151.7352 (18)C4—C51.386 (3)
S2—C91.7438 (17)C4—H40.9300
O1—C71.2245 (19)C5—C61.384 (2)
N3—C91.287 (2)C5—H50.9300
N3—C101.385 (2)C6—C71.479 (2)
N1—C81.383 (2)C10—C151.397 (2)
N1—C71.383 (2)C10—C111.396 (3)
N1—H1A0.8600C11—C121.377 (3)
N2—C81.338 (2)C11—H110.9300
N2—C91.387 (2)C12—C131.385 (3)
N2—H2A0.8600C12—H120.9300
C1—C21.377 (2)C13—C141.376 (3)
C1—C61.390 (2)C13—H130.9300
C1—H10.9300C14—C151.391 (2)
C2—C31.373 (3)C14—H140.9300
C15—S2—C987.73 (8)O1—C7—C6122.10 (15)
C9—N3—C10109.80 (14)N1—C7—C6115.95 (14)
C8—N1—C7128.28 (14)N2—C8—N1115.16 (14)
C8—N1—H1A115.9N2—C8—S1125.01 (13)
C7—N1—H1A115.9N1—C8—S1119.83 (12)
C8—N2—C9129.75 (14)N3—C9—N2117.86 (15)
C8—N2—H2A115.1N3—C9—S2117.51 (13)
C9—N2—H2A115.1N2—C9—S2124.62 (12)
C2—C1—C6120.65 (16)N3—C10—C15114.96 (15)
C2—C1—H1119.7N3—C10—C11125.47 (17)
C6—C1—H1119.7C15—C10—C11119.57 (17)
C3—C2—C1118.89 (16)C12—C11—C10118.9 (2)
C3—C2—H2120.6C12—C11—H11120.6
C1—C2—H2120.6C10—C11—H11120.6
C4—C3—C2122.00 (17)C11—C12—C13121.1 (2)
C4—C3—Cl1119.14 (15)C11—C12—H12119.4
C2—C3—Cl1118.86 (14)C13—C12—H12119.4
C3—C4—C5118.75 (17)C14—C13—C12120.87 (19)
C3—C4—H4120.6C14—C13—H13119.6
C5—C4—H4120.6C12—C13—H13119.6
C6—C5—C4120.48 (16)C13—C14—C15118.47 (19)
C6—C5—H5119.8C13—C14—H14120.8
C4—C5—H5119.8C15—C14—H14120.8
C5—C6—C1119.21 (16)C14—C15—C10121.07 (17)
C5—C6—C7117.30 (14)C14—C15—S2128.91 (15)
C1—C6—C7123.48 (15)C10—C15—S2110.01 (13)
O1—C7—N1121.94 (16)
C6—C1—C2—C30.3 (3)C10—N3—C9—S20.4 (2)
C1—C2—C3—C40.5 (3)C8—N2—C9—N3177.61 (17)
C1—C2—C3—Cl1−178.90 (15)C8—N2—C9—S2−4.0 (3)
C2—C3—C4—C5−0.4 (3)C15—S2—C9—N3−0.44 (15)
Cl1—C3—C4—C5179.00 (15)C15—S2—C9—N2−178.82 (15)
C3—C4—C5—C6−0.5 (3)C9—N3—C10—C15−0.2 (2)
C4—C5—C6—C11.4 (3)C9—N3—C10—C11179.64 (19)
C4—C5—C6—C7−179.30 (17)N3—C10—C11—C12−179.08 (18)
C2—C1—C6—C5−1.3 (3)C15—C10—C11—C120.8 (3)
C2—C1—C6—C7179.44 (17)C10—C11—C12—C13−0.3 (3)
C8—N1—C7—O1−2.2 (3)C11—C12—C13—C14−0.5 (3)
C8—N1—C7—C6178.38 (16)C12—C13—C14—C150.8 (3)
C5—C6—C7—O1−24.7 (3)C13—C14—C15—C10−0.3 (3)
C1—C6—C7—O1154.64 (18)C13—C14—C15—S2179.10 (15)
C5—C6—C7—N1154.75 (16)N3—C10—C15—C14179.37 (16)
C1—C6—C7—N1−25.9 (2)C11—C10—C15—C14−0.5 (3)
C9—N2—C8—N1177.45 (16)N3—C10—C15—S2−0.1 (2)
C9—N2—C8—S1−3.6 (3)C11—C10—C15—S2−179.97 (15)
C7—N1—C8—N22.7 (3)C9—S2—C15—C14−179.14 (18)
C7—N1—C8—S1−176.34 (14)C9—S2—C15—C100.28 (13)
C10—N3—C9—N2178.94 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.882.6056 (19)141
N1—H1A···S1i0.862.753.5377 (17)152
C5—H5···O1ii0.932.493.389 (2)163

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2003).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dillen, J., Woldu, M. G. & Koch, K. R. (2006). Acta Cryst. E62, o5225–o5227.
  • Göblyös, A., Vries, H., Brussee, J. & Ijzerman, A. P. (2005). J. Med. Chem.48, 1145–1151. [PubMed]
  • Jian, F., Zhao, P., Hou, Y. & Lu, L. (2005). Struct. Chem.16, 123–128.
  • Khawar Rauf, M., Badshah, A. & Flörke, U. (2006). Acta Cryst. E62, o2452–o2453.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Rana, A., Siddiqui, N., Khan, S. A., Haque, S. E. & Bhat, M. A. (2008). Eur. J. Med. Chem.43, 1114–1122. [PubMed]
  • Saeed, A. & Flörke, U. (2006). Acta Cryst. E62, o2924–o2925.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shukla, D. K. & Srivastava, S. D. (2008). Indian J. Chem. Sect. B, 47, 463–469.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem.38, 781–786. [PubMed]
  • Weiqun, Z., Baolong, L., Liming, Z., Jiangang, D., Yong, Z., Lude, L. & Xujie, Y. (2004). J. Mol. Struct.690, 145–150.
  • Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography