PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1185–m1186.
Published online 2009 September 9. doi:  10.1107/S1600536809035326
PMCID: PMC2970218

Bis[1,3-bis­(2-cyano­phen­yl)triazenido]mercury(II)

Abstract

In the title compound, [Hg(C14H8N5)2], the central atom is four-coordinated by two bidentate 1,3-bis­(2-cyano­phen­yl)triazenide ligands in a distorted square-planar geometry. The asymmteric unit is composed of one ligand molecule and one HgII ion, which is disordered over two sites, one lying on an inversion center and the other on a general position with site-occupancy factors of 0.2378 (7) and 0.3811 (7), respectively. The monomeric mol­ecules of the complex are linked into pairs through non-classical C—H(...)N hydrogen bonds. The resulting dimeric units are assembled by translation along the crystallographic c axis into chains linked through secondary π–π inter­actions [centroid–centroid distances = 3.685 (2) and 3.574 (2) Å], as well as C—H(...)π stacking inter­actions, resulting in a two-dimensional architecture.

Related literature

For transition metal complexes containing 1,3-diaryl­triazenide ions, see: Vrieze & Van Koten (1987 [triangle]); Hursthouse et al. (1993 [triangle]). For metal–η-arene π-inter­actions in HgII complexes, see: Horner et al. (2006 [triangle]). For related crystal structures, see: Rofouei et al. (2006 [triangle]); Melardi et al. (2008 [triangle]); Payehghadr et al. (2006 [triangle]); Melardi et al. (2007 [triangle]); Hematyar & Rofouei (2008 [triangle]); Rofouei et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1185-scheme1.jpg

Experimental

Crystal data

  • [Hg(C14H8N5)2]
  • M r = 693.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1185-efi2.jpg
  • a = 23.0721 (12) Å
  • b = 7.7307 (4) Å
  • c = 15.6680 (8) Å
  • β = 110.481 (1)°
  • V = 2617.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.92 mm−1
  • T = 100 K
  • 0.21 × 0.20 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.296, T max = 0.629
  • 15538 measured reflections
  • 3479 independent reflections
  • 2876 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.085
  • S = 0.99
  • 3479 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 2.67 e Å−3
  • Δρmin = −1.12 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035326/pv2202sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035326/pv2202Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Triazenes are characterized by a diazoamino group (NN—N) commonly adopting a trans configuration in the ground state. Recently, the study of transition metal complexes containing 1,3-diaryltriazenide ions has been increased due to the potential reactivity of these ligands (Vrieze & Koten, 1987). This anion is a three-atom donor ligand that can act as a monodentate group, a chelating ligand or a bridging ligand between two metal centers (Hursthouse et al., 1993).

Several bisdiaryl symmetric and asymmetric-substituted triazenide complex polymers of Hg(II) which have a remarkable ability to self-assemble in different manners through metal-η-arene π-interactions have been reported (Horner et al., 20006). Hg(II) is a diamagnetic ion and maintains d10 electron configuration which minimizes intrinsic coordination geometry preferences while favoring coordination by softer ligands. We have previously reported the synthesis of [1,3-bis(2-methoxy)phenyl]triazene ligand (Rofouei et al., 2006) and its Ag(I) complex (Payehghadr et al., 2006). In addition, we have reported the Hg(II) complexes with this ligand by using HgCl2 (Melardi et al., 2007), HgBr2 (Hematyar and Rofouei, 2008), Hg(CH3COO)2 and Hg(SCN)2 (Rofouei et al., 2009) as starting materials. In this paper, a new Hg(II) complex of a recently synthesized ligand ([1,3-bis(2-cyano)phenyl]triazene) (Melardi et al., 2008) is reported. Mercury(II) acetate was used as the starting material.

The molecular structure of the title compound is shown in Fig. 1. There is a high disorder of Hg atom in the complex. The Hg(II) atom was disordered over 3 sites (only 2 of them are symmetrically independent). Hg1:Hg1A:Hg2 atoms are disordered in ratio 0.38:0.38:0.24. The central atom in this compound is coordinated by two symmetrically related triazenide ions. Each HgII atom is four-coordinated by two nitrogen atoms N1, and N3 of two 1,3-bis(2-cyano)phenyl]triazene fragments which act as bidentate ligands. The arrangement of the four donor atoms around Hg(II) atom results in a distorted square planar geometry.

In the lattice of the title compound, the monomeric [Hg(C14H8N5)2] molecules are linked into pairs through non-classical C–H···N hydrogen bonds (details are provided in Table 1). The resulting dimeric units are assembled by translation along the crystallographic c axis to unidimensional chains linked through secondary π–interactions. Consequently, 1-D chains formed by C–H···N hydrogen bonds are connected with one another by π-π and C–H···π stacking interactions, resulting in the 2-D architecture(Fig. 2). These π-π stacking interactions are present between aromatic rings with centroid-centroid distances of 3.685 (2) and 3.574 (2) Å and also between C–H group of phenyl rings with aromatic rings with H···π distance of 2.96 Å for C10—H10A···Cg; Cg is the centroid of C7—C12 ring.

Experimental

Anhydrous methanolic solution of [1,3-bis(2-cyano)phenyl]triazene (0.247 g) was added to anhydrous methanolic solution of mercury(II) acetate ( 0.160 g). After several hours, the mixture was filtered, the product washed with methanol, the yellow precipitate thus obtained was dissolved in diethyl ether and stored in a freezer. After 14 days, well formed orange-red crystals were produced which decompose above 523 K.

Refinement

There is a high disorder of Hg atom in the comples. The Hg atom in the complex was disordered over 3 sites (only 2 of them are symmetrically independent), where disorder was refined as free variable (using FVAR instrcution).

Positions of H-atoms were calculated and refined in isotropic approximation in riding mode with (C–H = 0.95 Å) and Uiso(H) = 1.2Ueq(parent C).

There is a high positive residual density of 2.67 e Å-3 near the Hg1 center (distance 0.85% A) due to considerable absorption effects which could not be completely corrected.

Figures

Fig. 1.
Molecular structure of the title compound, with ellipsoids drawn at 50% probability level: Hg1 has been omitted for clarity. Symmetry code to generate atoms with label "a": -x + 1, y, -z + 1/2.
Fig. 2.
The unit cell packing diagram of the title compound along b crystal axes showing π-π and C–H···π stacking interactions. Hydrogen atoms have been excluded for clarity.

Crystal data

[Hg(C14H8N5)2]F(000) = 1336
Mr = 693.50Dx = 1.759 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3560 reflections
a = 23.0721 (12) Åθ = 2.8–30.1°
b = 7.7307 (4) ŵ = 5.92 mm1
c = 15.6680 (8) ÅT = 100 K
β = 110.481 (1)°Plate, orange
V = 2617.9 (2) Å30.21 × 0.20 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3479 independent reflections
Radiation source: fine-focus sealed tube2876 reflections with I > 2σ(I)
graphiteRint = 0.044
ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −31→31
Tmin = 0.296, Tmax = 0.629k = −10→10
15538 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.04P)2 + 7P] where P = (Fo2 + 2Fc2)/3
3479 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 2.67 e Å3
0 restraintsΔρmin = −1.12 e Å3

Special details

Experimental. 1H NMR and 13C NMR of the free ligand and the title compound were recorded in DMSO as solvent:For the free ligand, hydrogen atoms of the aromatic ring appear at δ = 7.27–7.86 ppm (4H) and hydrogen atom of NH group appears at δ = 13.45 ppm (1H); in 13C NMR we have resonances at 118, 124, 128, 133, 134 and 135 ppm which belong to the carbon atoms of aromatic ring. In 1H NMR spectra of the title complex, the resonance for the hydrogen atom of NH group has completely disappeared and the hydrogen atoms of aromatic ring now appear at δ = 7.27–7.86 ppm (4H); in 13C NMR spectra, carbon atoms of aromatic ring have resonances at 103, 118, 120, 125, 133 and 149 ppm. These data support the structure presented in this article.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Hg10.467164 (12)0.37562 (3)0.213648 (18)0.01852 (8)0.3811 (7)
Hg20.50000.44451 (8)0.25000.01852 (8)0.2378 (7)
C10.46005 (11)0.2107 (3)0.02350 (18)0.0190 (5)
C20.40569 (13)0.1222 (4)0.0192 (2)0.0256 (6)
C30.37257 (13)0.0268 (4)−0.0586 (2)0.0313 (7)
H3A0.3360−0.0328−0.06110.038*
C40.39267 (15)0.0190 (4)−0.1315 (2)0.0337 (7)
H4A0.3703−0.0458−0.18420.040*
C50.44625 (14)0.1073 (4)−0.1270 (2)0.0288 (6)
H5A0.46000.1022−0.17740.035*
C60.48006 (12)0.2024 (4)−0.05072 (18)0.0215 (5)
H6A0.51650.2615−0.04910.026*
C70.62706 (12)0.5268 (3)0.19697 (18)0.0183 (5)
C80.65811 (13)0.6146 (4)0.27876 (19)0.0216 (5)
C90.71486 (13)0.6961 (4)0.2931 (2)0.0256 (6)
H9A0.73530.75530.34870.031*
C100.74111 (13)0.6907 (4)0.2268 (2)0.0269 (6)
H10A0.77970.74590.23640.032*
C110.71085 (13)0.6038 (4)0.1457 (2)0.0244 (6)
H11A0.72900.60070.09990.029*
C120.65480 (12)0.5218 (4)0.13037 (18)0.0199 (5)
H12A0.63510.46200.07470.024*
C130.38358 (14)0.1295 (4)0.0939 (3)0.0359 (8)
C140.63072 (15)0.6272 (4)0.3485 (2)0.0287 (6)
N10.49222 (10)0.2999 (3)0.10491 (16)0.0209 (5)
N20.54323 (10)0.3720 (3)0.10789 (15)0.0192 (5)
N30.56967 (10)0.4507 (3)0.18522 (15)0.0189 (5)
N40.36490 (15)0.1358 (5)0.1528 (3)0.0531 (9)
N50.60964 (15)0.6392 (4)0.4044 (2)0.0416 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.01873 (13)0.01983 (13)0.02026 (13)−0.00001 (10)0.01092 (9)−0.00188 (10)
Hg20.01873 (13)0.01983 (13)0.02026 (13)−0.00001 (10)0.01092 (9)−0.00188 (10)
C10.0150 (12)0.0155 (12)0.0251 (13)0.0019 (10)0.0053 (10)0.0025 (10)
C20.0172 (13)0.0223 (14)0.0358 (16)0.0018 (11)0.0074 (11)0.0029 (12)
C30.0189 (14)0.0213 (15)0.0452 (18)−0.0002 (11)0.0005 (13)0.0025 (13)
C40.0314 (16)0.0237 (15)0.0330 (17)0.0033 (12)−0.0052 (13)−0.0015 (12)
C50.0332 (16)0.0246 (15)0.0239 (14)0.0079 (12)0.0040 (12)0.0015 (11)
C60.0206 (13)0.0160 (12)0.0265 (14)0.0048 (10)0.0065 (11)0.0036 (11)
C70.0154 (12)0.0180 (12)0.0210 (12)0.0014 (9)0.0058 (10)0.0033 (10)
C80.0237 (13)0.0199 (13)0.0208 (13)0.0030 (10)0.0073 (11)0.0030 (10)
C90.0232 (14)0.0235 (14)0.0252 (14)−0.0004 (11)0.0022 (11)−0.0012 (11)
C100.0156 (13)0.0256 (14)0.0374 (16)0.0002 (11)0.0065 (12)0.0041 (13)
C110.0217 (13)0.0246 (15)0.0316 (15)0.0025 (11)0.0152 (12)0.0040 (11)
C120.0169 (12)0.0222 (14)0.0216 (13)0.0020 (10)0.0080 (10)0.0029 (10)
C130.0229 (15)0.0358 (18)0.052 (2)−0.0071 (13)0.0167 (15)0.0026 (15)
C140.0357 (16)0.0265 (15)0.0241 (14)−0.0007 (13)0.0106 (13)−0.0005 (12)
N10.0177 (11)0.0189 (11)0.0291 (12)−0.0018 (9)0.0120 (9)−0.0014 (9)
N20.0177 (10)0.0186 (11)0.0220 (11)0.0002 (9)0.0080 (9)0.0024 (9)
N30.0193 (11)0.0187 (11)0.0209 (11)−0.0009 (9)0.0098 (9)−0.0006 (9)
N40.0406 (18)0.064 (2)0.067 (2)−0.0130 (16)0.0348 (17)−0.0032 (18)
N50.0542 (19)0.0458 (18)0.0313 (15)−0.0025 (14)0.0231 (14)−0.0045 (13)

Geometric parameters (Å, °)

Hg1—Hg20.9381 (4)C5—H5A0.9500
Hg1—Hg1i1.5445 (5)C6—H6A0.9500
Hg1—N12.066 (2)C7—N31.401 (3)
Hg1—N3i2.124 (2)C7—C121.403 (4)
Hg1—N32.620 (2)C7—C81.405 (4)
Hg2—Hg1i0.9381 (4)C8—C91.399 (4)
Hg2—N32.181 (2)C8—C141.444 (4)
Hg2—N3i2.181 (2)C9—C101.374 (4)
Hg2—N12.483 (2)C9—H9A0.9500
Hg2—N1i2.483 (2)C10—C111.390 (4)
C1—C61.395 (4)C10—H10A0.9500
C1—C21.409 (4)C11—C121.384 (4)
C1—N11.411 (3)C11—H11A0.9500
C2—C31.401 (4)C12—H12A0.9500
C2—C131.432 (5)C13—N41.148 (5)
C3—C41.376 (5)C14—N51.145 (4)
C3—H3A0.9500N1—N21.288 (3)
C4—C51.392 (5)N2—N31.301 (3)
C4—H4A0.9500N3—Hg1i2.124 (2)
C5—C61.388 (4)
N1—Hg1—N3i173.18 (9)C9—C8—C7121.0 (3)
N1—Hg1—N352.63 (8)C9—C8—C14118.7 (3)
N3i—Hg1—N3133.38 (8)C7—C8—C14120.3 (3)
N3—Hg2—N3i177.49 (12)C10—C9—C8120.0 (3)
N3—Hg2—N154.04 (8)C10—C9—H9A120.0
N3i—Hg2—N1127.37 (8)C8—C9—H9A120.0
N3—Hg2—N1i127.37 (8)C9—C10—C11119.5 (3)
N3i—Hg2—N1i54.04 (8)C9—C10—H10A120.2
N1—Hg2—N1i126.46 (11)C11—C10—H10A120.2
C6—C1—C2119.1 (3)C12—C11—C10121.4 (3)
C6—C1—N1123.6 (2)C12—C11—H11A119.3
C2—C1—N1117.3 (2)C10—C11—H11A119.3
C3—C2—C1120.1 (3)C11—C12—C7120.0 (3)
C3—C2—C13119.3 (3)C11—C12—H12A120.0
C1—C2—C13120.5 (3)C7—C12—H12A120.0
C4—C3—C2120.4 (3)N4—C13—C2178.9 (4)
C4—C3—H3A119.8N5—C14—C8178.9 (4)
C2—C3—H3A119.8N2—N1—C1115.4 (2)
C3—C4—C5119.2 (3)N2—N1—Hg1111.29 (18)
C3—C4—H4A120.4C1—N1—Hg1132.34 (17)
C5—C4—H4A120.4N2—N1—Hg289.96 (16)
C6—C5—C4121.6 (3)C1—N1—Hg2153.44 (17)
C6—C5—H5A119.2N1—N2—N3111.2 (2)
C4—C5—H5A119.2N2—N3—C7115.6 (2)
C5—C6—C1119.5 (3)N2—N3—Hg1i112.79 (16)
C5—C6—H6A120.3C7—N3—Hg1i128.55 (17)
C1—C6—H6A120.3N2—N3—Hg2103.97 (16)
N3—C7—C12123.1 (2)C7—N3—Hg2139.87 (18)
N3—C7—C8118.7 (2)N2—N3—Hg184.13 (14)
C12—C7—C8118.2 (2)C7—N3—Hg1159.80 (18)
N1—Hg1—Hg2—Hg1i−80.24 (7)N3i—Hg2—N1—N2171.78 (14)
N3i—Hg1—Hg2—Hg1i103.00 (6)N1i—Hg2—N1—N2−118.98 (15)
N3—Hg1—Hg2—Hg1i−79.11 (7)Hg1—Hg2—N1—C112.3 (4)
Hg1i—Hg1—Hg2—N379.11 (7)Hg1i—Hg2—N1—C1124.7 (4)
N1—Hg1—Hg2—N3−1.13 (10)N3—Hg2—N1—C1−169.1 (4)
N3i—Hg1—Hg2—N3−177.89 (11)N3i—Hg2—N1—C18.4 (4)
Hg1i—Hg1—Hg2—N3i−103.00 (6)N1i—Hg2—N1—C177.6 (4)
N1—Hg1—Hg2—N3i176.76 (9)Hg1i—Hg2—N1—Hg1112.41 (8)
N3—Hg1—Hg2—N3i177.89 (11)N3—Hg2—N1—Hg1178.67 (12)
Hg1i—Hg1—Hg2—N180.24 (7)N3i—Hg2—N1—Hg1−3.92 (11)
N3i—Hg1—Hg2—N1−176.76 (9)N1i—Hg2—N1—Hg165.32 (5)
N3—Hg1—Hg2—N11.13 (10)C1—N1—N2—N3−179.9 (2)
Hg1i—Hg1—Hg2—N1i−52.59 (5)Hg1—N1—N2—N39.9 (3)
N1—Hg1—Hg2—N1i−132.83 (10)Hg2—N1—N2—N38.2 (2)
N3i—Hg1—Hg2—N1i50.42 (8)N1—N2—N3—C7177.2 (2)
N3—Hg1—Hg2—N1i−131.70 (9)N1—N2—N3—Hg1i15.2 (3)
C6—C1—C2—C30.3 (4)N1—N2—N3—Hg2−9.6 (2)
N1—C1—C2—C3−178.1 (2)N1—N2—N3—Hg1−7.29 (19)
C6—C1—C2—C13−179.4 (3)C12—C7—N3—N20.6 (4)
N1—C1—C2—C132.2 (4)C8—C7—N3—N2179.8 (2)
C1—C2—C3—C4−0.2 (4)C12—C7—N3—Hg1i159.3 (2)
C13—C2—C3—C4179.5 (3)C8—C7—N3—Hg1i−21.6 (4)
C2—C3—C4—C5−0.1 (4)C12—C7—N3—Hg2−169.1 (2)
C3—C4—C5—C60.3 (4)C8—C7—N3—Hg210.1 (4)
C4—C5—C6—C1−0.1 (4)C12—C7—N3—Hg1−166.4 (4)
C2—C1—C6—C5−0.1 (4)C8—C7—N3—Hg112.7 (7)
N1—C1—C6—C5178.1 (2)Hg1—Hg2—N3—N26.87 (18)
N3—C7—C8—C9−178.6 (2)Hg1i—Hg2—N3—N2114.18 (16)
C12—C7—C8—C90.6 (4)N1—Hg2—N3—N25.75 (14)
N3—C7—C8—C14−0.7 (4)N1i—Hg2—N3—N2117.46 (16)
C12—C7—C8—C14178.4 (3)Hg1—Hg2—N3—C7177.3 (3)
C7—C8—C9—C10−0.2 (4)Hg1i—Hg2—N3—C7−75.4 (3)
C14—C8—C9—C10−178.1 (3)N1—Hg2—N3—C7176.2 (3)
C8—C9—C10—C110.0 (4)N1i—Hg2—N3—C7−72.1 (3)
C9—C10—C11—C12−0.3 (4)N1—Hg2—N3—Hg1i−108.43 (9)
C10—C11—C12—C70.7 (4)N1i—Hg2—N3—Hg1i3.28 (9)
N3—C7—C12—C11178.3 (2)Hg1i—Hg2—N3—Hg1107.31 (8)
C8—C7—C12—C11−0.8 (4)N1—Hg2—N3—Hg1−1.12 (10)
C6—C1—N1—N2−1.5 (4)N1i—Hg2—N3—Hg1110.59 (11)
C2—C1—N1—N2176.7 (2)Hg2—Hg1—N3—N2−173.30 (17)
C6—C1—N1—Hg1166.1 (2)Hg1i—Hg1—N3—N2143.26 (16)
C2—C1—N1—Hg1−15.7 (4)N1—Hg1—N3—N25.33 (14)
C6—C1—N1—Hg2160.0 (3)N3i—Hg1—N3—N2−170.43 (12)
C2—C1—N1—Hg2−21.7 (5)Hg2—Hg1—N3—C7−5.0 (5)
Hg2—Hg1—N1—N2−4.62 (19)Hg1i—Hg1—N3—C7−48.5 (5)
Hg1i—Hg1—N1—N2−38.93 (18)N1—Hg1—N3—C7173.6 (5)
N3—Hg1—N1—N2−5.75 (15)N3i—Hg1—N3—C7−2.2 (6)
Hg1i—Hg1—N1—C1153.1 (2)Hg2—Hg1—N3—Hg1i43.45 (5)
N3—Hg1—N1—C1−173.7 (3)N1—Hg1—N3—Hg1i−137.93 (11)
Hg1i—Hg1—N1—Hg2−34.32 (4)N3i—Hg1—N3—Hg1i46.32 (14)
N3—Hg1—N1—Hg2−1.13 (10)Hg1i—Hg1—N3—Hg2−43.45 (5)
Hg1—Hg2—N1—N2175.70 (18)N1—Hg1—N3—Hg2178.63 (12)
Hg1i—Hg2—N1—N2−71.89 (15)N3i—Hg1—N3—Hg22.87 (14)
N3—Hg2—N1—N2−5.63 (14)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···N4ii0.952.613.428 (5)145
C6—H6A···N5iii0.952.613.522 (5)160
C10—H10A···Cg2iv0.952.963.629 (2)129

Symmetry codes: (ii) x, −y, z−1/2; (iii) x, −y+1, z−1/2; (iv) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2202).

References

  • Bruker (2005). APEX2,SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci 24, x117–x118.
  • Horner, M., Manzoni de Oliveira, G., Bonini, J. S. & Fenner, H. (2006). J. Organomet. Chem 691, 655–658.
  • Hursthouse, M. B., Mazid, M. A., Clark, T. & Robinson, S. D. (1993). Polyhedron, 12, 563–565.
  • Melardi, M. R., Khalili Ghaydar, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci 24, x-281–x282.
  • Melardi, M. R., Rofouei, M. K. & Massomi, J. (2007). Anal. Sci 23, x67–x68.
  • Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2006). Inorg. Chim. Acta, 360, 1792–1798.
  • Rofouei, M. K., Hematyar, M., Ghoulipour, V. & Attar Gharamaleki, J. (2009). Inorg. Chim. Acta, 362, 3777–3784.
  • Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci 22, x79–x80.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry, pp. 189–244. Oxford: Pergamon Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography