PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2348.
Published online 2009 September 5. doi:  10.1107/S1600536809035235
PMCID: PMC2970217

{2-[(2,6-Difluoro­phen­oxy)meth­yl]phen­yl}boronic acid

Abstract

The planes of the two benzene rings in the mol­ecule of the title compound, C13H11BF2O3, form a dihedral angle of 76.06 (3)°; the C—O—C—C torsion angle characterizing the conformation of the central link of the mol­ecule is −79.20 (1)°. The dihydroxy­boron group is not coplanar with the benzene ring bonded to the B atom; one of the C—C—B—O torsion angles is 32.39 (2)°. One of the OH groups of the boronic acid fragment is engaged in an intra­molecular hydrogen bond, whereas the second OH group participates in inter­molecular hydrogen bonding, which leads to the formation of centrosymmetric dimers.

Related literature

For applications of boronic acids and aryl-benzyl ethers, see: Bien et al. (1995 [triangle]); Dai et al. (2009 [triangle]); Miyaura & Suzuki (1995 [triangle]). For the structure of a related boronic acid, see: Serwatowski et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2348-scheme1.jpg

Experimental

Crystal data

  • C13H11BF2O3
  • M r = 264.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2348-efi1.jpg
  • a = 7.6660 (7) Å
  • b = 14.2299 (13) Å
  • c = 11.3595 (13) Å
  • β = 101.146 (9)°
  • V = 1215.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.77 × 0.49 × 0.31 mm

Data collection

  • Oxford Diffraction KM-4-CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005 [triangle]) T min = 0.905, T max = 0.964
  • 16118 measured reflections
  • 2969 independent reflections
  • 2398 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.082
  • S = 1.09
  • 2969 reflections
  • 217 parameters
  • All H-atom parameters refined
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035235/ya2103sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035235/ya2103Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Warsaw University of Technology and the Polish Ministry of Science and Higher Education (grant No. N N205 055633). The X-ray data were collected in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. We acknowledge the Aldrich Chemical Company for the donation of chemicals and equipment.

supplementary crystallographic information

Comment

The high synthetic utility of boronic acids (Bien et al., 1995; Miyaura & Suzuki, 1995) boosts continuous progress in the preparation and characterization of these compounds. The title compound, C13H11BF2O3(I), is the first example of the arylboronic acid based on the aryl-benzyl ether core containing aryloxymethylene substituent. The structure of arylboronic acid with benzyloxy substituent has been published a few years ago (Serwatowski et al., 2006). Aryl-benzyl ethers found recently their new application as human immunodeficiency virus-1 (HIV-1) inhibitors (Dai et al., 2009).

The planes of two benzene rings in the molecule of (I) (Fig. 1) form the dihedral angle of 76.06 (3)° and the torsion angle C8—O3—C7—C6 characterizing the conformation of the central link of the molecule, is equal to -79.20 (1)°. The dihydroxyboron group is not coplanar with the benzene ring to which the B1 atom is attached: the C6—C1—B1—O1 torsion angle is equal to 32.39 (2)°.

The hydrogen atom bonded to O1 is involved in a relatively weak intramolecular O1—H1O···O3 bond. The hydrogen atom at the O2 atom paricipates in the intermolecular hydrogen bonding, which leads to the formation of centrosymmetric dimers (Table 1, Fig. 2).

Experimental

The title compound was received from Aldrich; crystals suitable for X-ray study were grown from toluene.

Refinement

Hydrogen atoms were located in the difference map and refined isotropically; C—H 0.946 (15)–0.978 (15) Å; O1—H1O 0.821 (16) and O1—H2O 0.853 (17) Å.

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius.
Fig. 2.
The crystal packing of (I) viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) were omitted for clarity.

Crystal data

C13H11BF2O3F(000) = 544
Mr = 264.03Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7068 reflections
a = 7.6660 (7) Åθ = 57.4–2.7°
b = 14.2299 (13) ŵ = 0.12 mm1
c = 11.3595 (13) ÅT = 100 K
β = 101.146 (9)°Prismatic, colourless
V = 1215.8 (2) Å30.77 × 0.49 × 0.31 mm
Z = 4

Data collection

Oxford Diffraction KM-4-CCD diffractometer2969 independent reflections
Radiation source: fine-focus sealed tube2398 reflections with I > 2σ(I)
graphiteRint = 0.014
Detector resolution: 8.6479 pixels mm-1θmax = 28.7°, θmin = 2.7°
ω scansh = −10→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005)k = −18→18
Tmin = 0.905, Tmax = 0.964l = −14→14
16118 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.082w = 1/[σ2(Fo2) + (0.0425P)2 + 0.2189P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2969 reflectionsΔρmax = 0.32 e Å3
217 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.91559 (8)0.19749 (4)0.55376 (5)0.02345 (16)
F20.72933 (9)−0.06640 (5)0.31548 (6)0.02896 (18)
O10.93207 (10)0.03767 (6)0.12362 (7)0.02301 (19)
O20.79654 (11)0.07674 (6)−0.07273 (7)0.02281 (18)
O30.88984 (10)0.10342 (5)0.33861 (6)0.01920 (17)
C10.63372 (13)0.13060 (7)0.08786 (9)0.0169 (2)
C20.46817 (14)0.12551 (7)0.01011 (10)0.0212 (2)
C30.31535 (15)0.16368 (8)0.04040 (11)0.0264 (2)
C40.32593 (15)0.20931 (8)0.14881 (12)0.0270 (3)
C50.48874 (15)0.21687 (7)0.22700 (10)0.0228 (2)
C60.64210 (13)0.17778 (7)0.19835 (9)0.0172 (2)
C70.81506 (14)0.19166 (7)0.28507 (9)0.0193 (2)
C80.81871 (13)0.06741 (7)0.43106 (9)0.0162 (2)
C90.83455 (13)0.11215 (7)0.54123 (9)0.0176 (2)
C100.77635 (15)0.07254 (8)0.63736 (10)0.0216 (2)
C110.70321 (15)−0.01698 (8)0.62442 (10)0.0236 (2)
C120.68763 (14)−0.06530 (8)0.51687 (10)0.0230 (2)
C130.74362 (14)−0.02158 (7)0.42232 (9)0.0196 (2)
B10.79588 (15)0.08049 (8)0.04625 (10)0.0180 (2)
H1O0.921 (2)0.0424 (11)0.1939 (15)0.039 (4)*
H2O0.877 (2)0.0400 (12)−0.0883 (14)0.045 (4)*
H20.4580 (17)0.0929 (9)−0.0654 (12)0.024 (3)*
H30.202 (2)0.1592 (10)−0.0139 (13)0.035 (4)*
H40.220 (2)0.2362 (10)0.1720 (13)0.037 (4)*
H50.4967 (18)0.2490 (10)0.3020 (12)0.028 (3)*
H7A0.7984 (16)0.2351 (9)0.3485 (11)0.019 (3)*
H7B0.9085 (16)0.2154 (9)0.2457 (11)0.019 (3)*
H100.7881 (19)0.1076 (10)0.7123 (13)0.036 (4)*
H110.6634 (19)−0.0452 (10)0.6898 (13)0.032 (4)*
H120.6353 (19)−0.1267 (11)0.5073 (12)0.036 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0302 (3)0.0207 (3)0.0189 (3)−0.0036 (2)0.0035 (2)−0.0040 (2)
F20.0401 (4)0.0230 (3)0.0228 (4)−0.0024 (3)0.0038 (3)−0.0084 (3)
O10.0251 (4)0.0324 (4)0.0124 (4)0.0089 (3)0.0059 (3)−0.0009 (3)
O20.0280 (4)0.0264 (4)0.0147 (4)0.0068 (3)0.0059 (3)−0.0001 (3)
O30.0220 (4)0.0218 (4)0.0149 (4)0.0044 (3)0.0063 (3)0.0009 (3)
C10.0195 (5)0.0137 (5)0.0180 (5)0.0000 (4)0.0049 (4)0.0029 (4)
C20.0239 (5)0.0163 (5)0.0224 (5)−0.0006 (4)0.0019 (4)0.0028 (4)
C30.0194 (5)0.0209 (5)0.0371 (6)0.0005 (4)0.0010 (5)0.0076 (5)
C40.0231 (6)0.0204 (5)0.0402 (7)0.0053 (4)0.0131 (5)0.0076 (5)
C50.0295 (6)0.0165 (5)0.0253 (6)0.0040 (4)0.0129 (5)0.0031 (4)
C60.0217 (5)0.0125 (4)0.0187 (5)0.0004 (4)0.0071 (4)0.0034 (4)
C70.0263 (5)0.0167 (5)0.0155 (5)−0.0008 (4)0.0056 (4)0.0005 (4)
C80.0151 (4)0.0197 (5)0.0139 (5)0.0048 (4)0.0030 (3)0.0015 (4)
C90.0175 (5)0.0170 (5)0.0173 (5)0.0023 (4)0.0006 (4)−0.0006 (4)
C100.0253 (5)0.0246 (5)0.0147 (5)0.0066 (4)0.0034 (4)0.0014 (4)
C110.0234 (5)0.0263 (6)0.0217 (5)0.0060 (4)0.0059 (4)0.0092 (4)
C120.0216 (5)0.0188 (5)0.0277 (6)0.0019 (4)0.0028 (4)0.0039 (4)
C130.0203 (5)0.0194 (5)0.0180 (5)0.0041 (4)0.0010 (4)−0.0034 (4)
B10.0206 (5)0.0175 (5)0.0162 (5)−0.0008 (4)0.0046 (4)−0.0011 (4)

Geometric parameters (Å, °)

F1—C91.3589 (12)C4—H40.978 (15)
F2—C131.3566 (12)C5—C61.3948 (15)
O1—B11.3708 (14)C5—H50.959 (14)
O1—H1O0.821 (16)C6—C71.5041 (15)
O2—B11.3536 (14)C7—H7A0.976 (13)
O2—H2O0.853 (17)C7—H7B0.976 (12)
O3—C81.3727 (12)C8—C131.3865 (15)
O3—C71.4630 (12)C8—C91.3884 (14)
C1—C21.4010 (15)C9—C101.3776 (15)
C1—C61.4139 (14)C10—C111.3880 (16)
C1—B11.5825 (15)C10—H100.976 (15)
C2—C31.3934 (16)C11—C121.3868 (16)
C2—H20.965 (13)C11—H110.946 (15)
C3—C41.3806 (18)C12—C131.3795 (16)
C3—H30.966 (15)C12—H120.959 (15)
C4—C51.3891 (17)
B1—O1—H1O112.4 (11)O3—C7—H7B103.0 (7)
B1—O2—H2O112.0 (10)C6—C7—H7B112.2 (7)
C8—O3—C7117.18 (7)H7A—C7—H7B109.4 (10)
C2—C1—C6117.67 (9)O3—C8—C13120.47 (9)
C2—C1—B1117.17 (9)O3—C8—C9122.68 (9)
C6—C1—B1125.14 (9)C13—C8—C9116.49 (9)
C3—C2—C1121.77 (10)F1—C9—C10119.62 (9)
C3—C2—H2118.7 (8)F1—C9—C8117.57 (9)
C1—C2—H2119.5 (8)C10—C9—C8122.79 (10)
C4—C3—C2119.76 (11)C9—C10—C11118.53 (10)
C4—C3—H3119.4 (9)C9—C10—H10119.5 (9)
C2—C3—H3120.9 (9)C11—C10—H10121.9 (9)
C3—C4—C5119.83 (10)C12—C11—C10120.83 (10)
C3—C4—H4121.1 (9)C12—C11—H11119.7 (9)
C5—C4—H4119.1 (9)C10—C11—H11119.5 (8)
C4—C5—C6120.90 (10)C13—C12—C11118.39 (10)
C4—C5—H5120.0 (8)C13—C12—H12120.6 (8)
C6—C5—H5119.1 (8)C11—C12—H12120.9 (8)
C5—C6—C1120.05 (10)F2—C13—C12120.07 (9)
C5—C6—C7118.09 (9)F2—C13—C8117.00 (9)
C1—C6—C7121.78 (9)C12—C13—C8122.92 (10)
O3—C7—C6112.62 (8)O2—B1—O1118.25 (9)
O3—C7—H7A109.5 (7)O2—B1—C1118.09 (9)
C6—C7—H7A110.0 (7)O1—B1—C1123.62 (9)
C6—C1—C2—C3−1.23 (15)C13—C8—C9—F1176.87 (8)
B1—C1—C2—C3177.16 (10)O3—C8—C9—C10−174.44 (9)
C1—C2—C3—C41.10 (16)C13—C8—C9—C10−1.33 (15)
C2—C3—C4—C5−0.02 (16)F1—C9—C10—C11−176.36 (9)
C3—C4—C5—C6−0.90 (16)C8—C9—C10—C111.80 (16)
C4—C5—C6—C10.74 (15)C9—C10—C11—C12−0.50 (16)
C4—C5—C6—C7177.80 (9)C10—C11—C12—C13−1.17 (16)
C2—C1—C6—C50.31 (14)C11—C12—C13—F2−179.55 (9)
B1—C1—C6—C5−177.94 (10)C11—C12—C13—C81.67 (16)
C2—C1—C6—C7−176.63 (9)O3—C8—C13—F2−6.00 (14)
B1—C1—C6—C75.11 (15)C9—C8—C13—F2−179.27 (8)
C8—O3—C7—C6−79.20 (11)O3—C8—C13—C12172.82 (9)
C5—C6—C7—O3115.02 (10)C9—C8—C13—C12−0.46 (15)
C1—C6—C7—O3−67.98 (12)C2—C1—B1—O231.58 (14)
C7—O3—C8—C13121.32 (10)C6—C1—B1—O2−150.16 (10)
C7—O3—C8—C9−65.84 (12)C2—C1—B1—O1−145.87 (10)
O3—C8—C9—F13.76 (14)C6—C1—B1—O132.39 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.821 (16)1.915 (16)2.6926 (11)157.7 (15)
O2—H2O···O1i0.853 (17)1.937 (17)2.7889 (11)176.9 (16)

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2103).

References

  • Bien, J. T., Shang, M. & Smith, B. D. (1995). J. Org. Chem 60, 2147–2152.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Dai, H. L., Liu, W. Q., Xu, H., Yang, L. M., Lv, M. & Zheng, Y. T. (2009). Chem. Pharm. Bull 57, 84–86. [PubMed]
  • Miyaura, N. & Suzuki, A. (1995). Chem. Rev 95, 2457–2483.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Serwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308–o1309.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography