PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2511.
Published online 2009 September 26. doi:  10.1107/S1600536809037246
PMCID: PMC2970208

3-(3-Bromo­benz­yl)-1H-isochromen-1-one

Abstract

In the title compound, C16H11BrO2, the isocoumarin ring system is planar (r.m.s. deviation = 0.015 Å) and subtends a dihedral angle of 88.90 (2)° with the bromo­benzene ring. In the crystal, mol­ecules are linked, forming a three-dimensional packing pattern involving C—H(...)O inter­actions, Br(...)O contacts [3.4734 (10) Å] and π–π stacking inter­actions with centroid–centroid distances ranging from 3.667 (2) to 3.765 (2) Å.

Related literature

For the properties and applications of isocoumarins and 3,4-dihydro­isocoumarins, see: Chinworrungsee et al. (2002 [triangle]); Devienne et al. (2002 [triangle]); Mali & Babu (1998 [triangle]); Rama et al. (1998 [triangle]); Waters & Kozlowski (2001 [triangle]). For related structures, see: Abid et al. (2008 [triangle]); Babar et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2511-scheme1.jpg

Experimental

Crystal data

  • C16H11BrO2
  • M r = 315.16
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2511-efi1.jpg
  • a = 7.4508 (5) Å
  • b = 8.1824 (6) Å
  • c = 11.3663 (8) Å
  • α = 90.130 (6)°
  • β = 98.392 (7)°
  • γ = 113.844 (8)°
  • V = 625.58 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.28 mm−1
  • T = 103 K
  • 0.25 × 0.25 × 0.20 mm

Data collection

  • Oxford Xcalibur E diffractometer
  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction 2009 [triangle]) T min = 0.922, T max = 1.000
  • 16250 measured reflections
  • 3449 independent reflections
  • 2899 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.045
  • S = 0.97
  • 3449 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037246/rz2357sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037246/rz2357Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TMB is grateful to the Higher Education Commission of Pakistan for financial support for a PhD program.

supplementary crystallographic information

Comment

In recent years, there has been increasing interest in the synthesis of natural products, since they are an excellent and reliable source for the development of new drugs. Isocoumarins and 3,4-dihydroisocoumarins are a class of natural products that often occur as microbial metabolites and that have been found to exhibit interesting biological properties (Mali & Babu, 1998), including anti-fungal, anti-inflammatory, anti-allergic, antiangiogenic, anti-malaria (Chinworrungsee et al., 2002), anti-bacterial (Rama et al., 1998), anti-cancer, anti-virus (Waters & Kozlowski, 2001) and anti-microbial activities (Davienne et al., 2002). In view of the importance of this class of compounds, the title compound, an isocoumarine derivative containing a 3-bromobenzyl substituent, has been synthesized and its crystal structure is reported here. We have previously reported the structures of the analogous fluorine and chlorine derivatives (Babar et al., 2008; Abid et al., 2008), which crystallize with two and three molecules respectively in the asymmetric unit.

The molecule of the title compound is shown in Fig. 1. The structure is not isotypic to either of the analogous derivatives. Bond lengths and angles may be regarded as normal by comparison with the earlier structures (Babar et al., 2008; Abid et al., 2008), although in each structure several bond angles are appreciably different from ideal values [e. g. in the current structure O2—C1—C9 126.19 (12), C3—C2—C10 128.78 (12), O1—C2—C10 109.56 (11), C2—C10—C11 112.98 (11)°]. The isocoumarin ring system and the bromobenzene ring are both planar within r.m.s. deviations of 0.015 Å and subtend a dihedral angle of 88.90 (2)°.

The packing diagram (Fig. 2) shows the molecules to be linked by two C—H···O hydrogen bonds (Table 1) and by π–π stacking interactions between the coumarin units and between the bromobenzene rings, with centroid-to-centroid distances ranging from 3.667 (2) to 3.765 (2) Å. A marginal Br···O interaction [Br···O2i 3.4734 (10) Å; symmetry code: (i) -1 + x, y, -1 + z] is also observed.

Experimental

A mixture of 2-(3-bromophenyl)acetic acid (5 g, 0.023 mol) and oxalyl chloride (2 ml, 0.024 mol) was stirred overnight. Completion of the reaction was indicated by cessation of gas evolution. Excess oxalyl chloride was removed under reduced pressure to afford 2-(3-bromophenyl)acetyl chloride. Homophthalic acid (1.0 g, 0.006 mol) was added and the solution was heated at 473 K for 4 h. The reaction mixture was dissolved in ethyl acetate and aqueous solution of sodium carbonate was added in order to remove the unreacted homophthalic acid. The organic layer was separated, concentrated and chromatographed on silica gel using pet ether as eluent to afford title compound (yield 65%,; m.p. 97–98°C) as a colourless solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were placed in calculated positions and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
Packing diagram of the title compound viewed perpendicular to the bc plane. C—H···O hydrogen interactions are indicated by dashed lines. H atoms not involved in hydrogen bonding are omitted.
Fig. 3.
Reaction scheme.

Crystal data

C16H11BrO2Z = 2
Mr = 315.16F(000) = 316
Triclinic, P1Dx = 1.673 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4508 (5) ÅCell parameters from 9750 reflections
b = 8.1824 (6) Åθ = 2.7–30.7°
c = 11.3663 (8) ŵ = 3.28 mm1
α = 90.130 (6)°T = 103 K
β = 98.392 (7)°Block, colourless
γ = 113.844 (8)°0.25 × 0.25 × 0.20 mm
V = 625.58 (8) Å3

Data collection

Oxford Xcalibur E diffractometer3449 independent reflections
Radiation source: Enhance (Mo) X-ray Source2899 reflections with I > 2σ(I)
graphiteRint = 0.025
Detector resolution: 16.1419 pixels mm-1θmax = 29.6°, θmin = 3.0°
ω scanh = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction 2009)k = −11→11
Tmin = 0.922, Tmax = 1.000l = −15→15
16250 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0233P)2] where P = (Fo2 + 2Fc2)/3
3449 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Non-bonded contact:3.4734 (0.0010) Br - O2_$5 157.19 (0.04) C13 - Br - O2_$5 144.68 (0.08) Br - O2_$5 - C1_$5 Operator for generating equivalent atoms: $5 x - 1, y, z - 1Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)- 1.8912 (0.0020) x + 7.3803 (0.0014) y + 4.4053 (0.0037) z = 0.7728 (0.0010)* 0.0088 (0.0008) C10 * -0.0063 (0.0011) C11 * 0.0058 (0.0010) C12 * 0.0167 (0.0011) C13 * 0.0215 (0.0010) C14 * -0.0036 (0.0009) C15 * -0.0224 (0.0011) C16 * -0.0204 (0.0006) BrRms deviation of fitted atoms = 0.01517.0134 (0.0011) x - 0.6456 (0.0018) y - 2.6242 (0.0032) z = 3.6495 (0.0018)Angle to previous plane (with approximate e.s.d.) = 88.90 (0.02)* -0.0183 (0.0009) C10 * -0.0095 (0.0009) O1 * 0.0027 (0.0011) C1 * -0.0081 (0.0008) O2 * 0.0273 (0.0011) C3 * 0.0129 (0.0012) C4 * -0.0052 (0.0011) C5 * -0.0241 (0.0011) C6 * -0.0078 (0.0012) C7 * 0.0144 (0.0012) C8 * 0.0159 (0.0012) C9Rms deviation of fitted atoms = 0.0152
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.13942 (2)0.205557 (19)−0.113746 (13)0.02023 (5)
O10.70881 (14)0.19099 (12)0.46026 (8)0.0146 (2)
O20.78538 (15)0.22208 (13)0.65672 (8)0.0195 (2)
C10.75969 (19)0.29281 (17)0.56653 (12)0.0141 (3)
C20.67678 (19)0.25762 (17)0.35091 (11)0.0128 (3)
C30.69140 (19)0.42394 (17)0.34239 (11)0.0136 (3)
H30.66990.46620.26610.016*
C40.73964 (18)0.54146 (17)0.44789 (11)0.0124 (3)
C50.7521 (2)0.71742 (18)0.44484 (12)0.0170 (3)
H50.72880.76430.37060.020*
C60.7982 (2)0.82214 (18)0.54931 (13)0.0182 (3)
H60.80450.94040.54650.022*
C70.8354 (2)0.75669 (19)0.65887 (13)0.0185 (3)
H70.86830.83060.73010.022*
C80.8248 (2)0.58509 (18)0.66416 (12)0.0162 (3)
H80.85070.54060.73890.019*
C90.77565 (19)0.47639 (17)0.55899 (11)0.0126 (3)
C100.6231 (2)0.11432 (17)0.25339 (11)0.0161 (3)
H10A0.49720.01380.26390.019*
H10B0.72800.06820.26020.019*
C110.5989 (2)0.17984 (17)0.12982 (11)0.0144 (3)
C120.4136 (2)0.16677 (17)0.07491 (11)0.0146 (3)
H120.30110.11470.11400.018*
C130.39414 (19)0.23009 (17)−0.03706 (12)0.0143 (3)
C140.5553 (2)0.30743 (18)−0.09635 (12)0.0155 (3)
H140.54010.3518−0.17260.019*
C150.7391 (2)0.31864 (17)−0.04193 (12)0.0165 (3)
H150.85100.3704−0.08150.020*
C160.7613 (2)0.25498 (17)0.06999 (12)0.0157 (3)
H160.88800.26270.10610.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.01563 (7)0.02239 (8)0.02281 (8)0.00845 (6)0.00152 (5)0.00243 (6)
O10.0220 (5)0.0115 (5)0.0106 (5)0.0075 (4)0.0015 (4)0.0015 (4)
O20.0273 (6)0.0183 (5)0.0130 (5)0.0098 (5)0.0022 (4)0.0048 (4)
C10.0134 (6)0.0152 (7)0.0135 (7)0.0051 (6)0.0033 (5)0.0009 (5)
C20.0130 (6)0.0147 (6)0.0106 (6)0.0051 (5)0.0027 (5)0.0033 (5)
C30.0162 (7)0.0141 (7)0.0107 (6)0.0065 (6)0.0016 (5)0.0022 (5)
C40.0109 (6)0.0123 (6)0.0145 (7)0.0046 (5)0.0033 (5)0.0014 (5)
C50.0191 (7)0.0163 (7)0.0170 (7)0.0087 (6)0.0031 (5)0.0034 (6)
C60.0188 (7)0.0124 (7)0.0246 (8)0.0069 (6)0.0053 (6)−0.0005 (6)
C70.0181 (7)0.0183 (7)0.0183 (7)0.0062 (6)0.0045 (6)−0.0049 (6)
C80.0164 (7)0.0187 (7)0.0123 (7)0.0054 (6)0.0039 (5)0.0009 (5)
C90.0111 (6)0.0130 (6)0.0138 (7)0.0045 (5)0.0034 (5)0.0013 (5)
C100.0218 (7)0.0117 (6)0.0141 (7)0.0060 (6)0.0028 (5)0.0010 (5)
C110.0208 (7)0.0089 (6)0.0124 (7)0.0053 (6)0.0014 (5)−0.0030 (5)
C120.0173 (7)0.0119 (6)0.0140 (7)0.0046 (6)0.0052 (5)−0.0014 (5)
C130.0147 (6)0.0121 (6)0.0155 (7)0.0058 (5)0.0001 (5)−0.0032 (5)
C140.0196 (7)0.0137 (7)0.0131 (7)0.0068 (6)0.0021 (5)0.0004 (5)
C150.0170 (7)0.0149 (7)0.0170 (7)0.0051 (6)0.0055 (5)0.0019 (6)
C160.0159 (7)0.0145 (7)0.0154 (7)0.0057 (6)0.0002 (5)−0.0012 (5)

Geometric parameters (Å, °)

Br—C131.9001 (13)C11—C161.3947 (19)
O1—C11.3796 (15)C12—C131.3854 (18)
O1—C21.3859 (15)C13—C141.3859 (19)
O2—C11.2073 (15)C14—C151.3842 (18)
C1—C91.4618 (18)C15—C161.3887 (18)
C2—C31.3256 (18)C3—H30.9500
C2—C101.4996 (18)C5—H50.9500
C3—C41.4426 (18)C6—H60.9500
C4—C91.4035 (18)C7—H70.9500
C4—C51.4056 (18)C8—H80.9500
C5—C61.3787 (19)C10—H10A0.9900
C6—C71.392 (2)C10—H10B0.9900
C7—C81.3759 (19)C12—H120.9500
C8—C91.3994 (18)C14—H140.9500
C10—C111.5166 (18)C15—H150.9500
C11—C121.3911 (18)C16—H160.9500
C1—O1—C2122.56 (10)C15—C14—C13118.52 (13)
O2—C1—O1117.22 (12)C14—C15—C16120.63 (13)
O2—C1—C9126.19 (12)C15—C16—C11120.46 (13)
O1—C1—C9116.59 (11)C2—C3—H3119.7
C3—C2—O1121.65 (12)C4—C3—H3119.7
C3—C2—C10128.78 (12)C6—C5—H5119.9
O1—C2—C10109.56 (11)C4—C5—H5119.9
C2—C3—C4120.62 (12)C5—C6—H6119.6
C9—C4—C5118.50 (12)C7—C6—H6119.6
C9—C4—C3118.22 (12)C8—C7—H7119.9
C5—C4—C3123.28 (12)C6—C7—H7119.9
C6—C5—C4120.19 (13)C7—C8—H8120.1
C5—C6—C7120.77 (13)C9—C8—H8120.1
C8—C7—C6120.14 (13)C2—C10—H10A109.0
C7—C8—C9119.74 (13)C11—C10—H10A109.0
C8—C9—C4120.65 (12)C2—C10—H10B109.0
C8—C9—C1119.01 (12)C11—C10—H10B109.0
C4—C9—C1120.34 (12)H10A—C10—H10B107.8
C2—C10—C11112.98 (11)C13—C12—H12120.2
C12—C11—C16119.06 (12)C11—C12—H12120.2
C12—C11—C10120.17 (12)C15—C14—H14120.7
C16—C11—C10120.77 (12)C13—C14—H14120.7
C13—C12—C11119.64 (12)C14—C15—H15119.7
C12—C13—C14121.67 (13)C16—C15—H15119.7
C12—C13—Br119.50 (10)C15—C16—H16119.8
C14—C13—Br118.81 (10)C11—C16—H16119.8
C2—O1—C1—O2−179.57 (11)O2—C1—C9—C8−0.1 (2)
C2—O1—C1—C90.95 (17)O1—C1—C9—C8179.34 (11)
C1—O1—C2—C3−0.72 (19)O2—C1—C9—C4−179.30 (13)
C1—O1—C2—C10−179.69 (11)O1—C1—C9—C40.14 (18)
O1—C2—C3—C4−0.6 (2)C3—C2—C10—C115.0 (2)
C10—C2—C3—C4178.12 (13)O1—C2—C10—C11−176.15 (11)
C2—C3—C4—C91.66 (19)C2—C10—C11—C12−90.92 (15)
C2—C3—C4—C5−178.28 (13)C2—C10—C11—C1688.60 (15)
C9—C4—C5—C6−0.22 (19)C16—C11—C12—C13−0.72 (19)
C3—C4—C5—C6179.72 (13)C10—C11—C12—C13178.81 (11)
C4—C5—C6—C70.9 (2)C11—C12—C13—C14−0.27 (19)
C5—C6—C7—C8−0.6 (2)C11—C12—C13—Br178.14 (9)
C6—C7—C8—C9−0.2 (2)C12—C13—C14—C150.9 (2)
C7—C8—C9—C40.9 (2)Br—C13—C14—C15−177.54 (10)
C7—C8—C9—C1−178.34 (13)C13—C14—C15—C16−0.50 (19)
C5—C4—C9—C8−0.63 (19)C14—C15—C16—C11−0.5 (2)
C3—C4—C9—C8179.43 (12)C12—C11—C16—C151.09 (19)
C5—C4—C9—C1178.56 (12)C10—C11—C16—C15−178.44 (12)
C3—C4—C9—C1−1.38 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.583.4666 (16)155
C10—H10A···O2ii0.992.503.4685 (17)166

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2357).

References

  • Abid, O.-U.-R., Qadeer, G., Rama, N. H., Ruzicka, A. & Padelkova, Z. (2008). Acta Cryst. E64, o2018. [PMC free article] [PubMed]
  • Babar, T. M., Qadeer, G., Abid, O.-R., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2266. [PMC free article] [PubMed]
  • Chinworrungsee, M., Kittakoop, P., Isaka, M., Chanphen, R., Tanticharoen, M. & Thebtaranonth, Y. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2473–2476.
  • Devienne, K. F., Raddi, M. S. G., Varanda, E. A. & Vilegas, W. (2002). Z. Naturforsch. Teil C, 57, 85–88. [PubMed]
  • Mali, R. S. & Babu, K. N. (1998). J. Org. Chem.63, 2288–2492. [PubMed]
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  • Rama, N. H., Iqbal, R. & Zamani, K. (1998). J. Chem. Soc. Pak.62, 18–21.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Waters, S. P. & Kozlowski, M. C. (2001). Tetrahedron Lett.42, 3567–3570.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography