PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2566.
Published online 2009 September 30. doi:  10.1107/S1600536809037416
PMCID: PMC2970206

4-Nitro­aniline–picric acid (2/1)

Abstract

In the title adduct, C6H3N3O7·0.5C6H6N2O2, the complete 4-nitro­aniline mol­ecule is generated by a crystallographic twofold axis with two C atoms and two N atoms lying on the axis. The mol­ecular components are linked into two dimensional corrugated layers running parallel to the (001) plane by a combination of inter­molecular N—H(...)O and C—H(...)O hydrogen bonds. The phenolic oxygen and two sets of nitro oxygen atoms in the picric acid were found to be disordered with occupancies of 0.81 (2):0.19 (2) and 0.55 (3):0.45 (3) and 0.77 (4):0.23 (4), respectively.

Related literature

For background to picrate derivatives, see: Harrison et al. (2007 [triangle]); Pascard et al. (1982 [triangle]); Pearson et al. (2007 [triangle]); Wang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2566-scheme1.jpg

Experimental

Crystal data

  • C6H3N3O7·0.5C6H6N2O2
  • M r = 298.18
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2566-efi1.jpg
  • a = 23.534 (2) Å
  • b = 9.3318 (8) Å
  • c = 10.5047 (9) Å
  • V = 2307.0 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 298 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 16332 measured reflections
  • 2855 independent reflections
  • 2154 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.136
  • S = 1.06
  • 2855 reflections
  • 241 parameters
  • 18 restraints
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037416/bg2290sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037416/bg2290Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Wuhan University of Science and Technology for supporting this study.

supplementary crystallographic information

Comment

Picric acid has been early used in the characterization of organic bases because of the ease of crystallization and hence purification when picrate derivatives were produced (Pascard et al., 1982; Wang et al., 2003; Pearson et al., 2007; Harrison et al., 2007). Here, we report the crystal structure of the title adduct, 2(C6H3N3O7).C6H6N2O2, (I), where the hydrogen atom was not transferred from the picric acid to the nitroaniline molecule, as expected, thus forming a neutral 1:2 molecular adduct (acid to base) (Fig.1). The 4-nitroaniline molecule is bisected by a mirror plane through the N4-C7···C10-N5 line, and the picric acid unit presents a number of disordered sites (see refinement section for details). In the latter acid group, the parameters of C1—O1 = 1.347 (4)Å and C6—C1—C2=115.2 (3)° are indicative of the proton presence, confirmed by the difference electron density map.

In the crystal packing, the molecular components are linked into a dimensional zigzag-like layer (Fig.2) running parallel to the (001) plane by a combination of intermolecular N—H···O, O—H···N and C—H···O hydrogen bonds (Table 1).

Experimental

Picric acid (0.6873 g, 3 mmol) and 4-nitroaniline (0.4144 g, 3 mmol) were mixed in 10 ml e thanol.The mixture was kept at room temperature for two weeks,after which time needle like yellow crystals (0.40 x 0.08 x 0.03 mm) suitable for single-crystal X-ray diffraction were obtained.

Refinement

In the refinement, the phenolic oxygen O1 and two sets of nitro-oxygen atoms ( O2/O3 and O4/O5) in the picric acid were found to be disordered over two positions. They were refined by using soft restraints (SHELXL commands PART, DFIX and SADI). The final occupancies refined to 0.81:0.19 (2), 0.55:0.45 (3) and 0.77:0.23 (4) for O1, O2/O3 and O4/O5 atoms, respectively.

Hydrogen H4A atom was first determined in the difference electron density map and placed at its idealized position with N—H = 0.86 Å and Uiso(H) =1.2Ueq(N). Owing to the disorder, hydrogen atoms attached to phenolic O1 or O1' atoms were placed also at the idealizeded positions with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(N). The carbonic hydrogen atoms were positioned into their respective idealized positions, with C—H = 0.93 Å and Uiso(Haryl) = 1.2Ueq(Caryl).

Figures

Fig. 1.
The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as blue dashed lines. Symmetry code a: 1-x, y, -z+1/2
Fig. 2.
Section of the title structure, showing the two-dimensional (001) layer. Hydrogen bonds are shown as dashed lines. For the sake of clarity, the H atoms not involved in the hydrogen-bonds pattern have been omitted.

Crystal data

C6H3N3O7·0.5C6H6N2O2F(000) = 1216
Mr = 298.18Dx = 1.717 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5243 reflections
a = 23.534 (2) Åθ = 2.4–27.1°
b = 9.3318 (8) ŵ = 0.16 mm1
c = 10.5047 (9) ÅT = 298 K
V = 2307.0 (3) Å3Block, red
Z = 80.30 × 0.20 × 0.10 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer2154 reflections with I > 2σ(I)
Radiation source: fine focus sealed Siemens Mo tubeRint = 0.033
graphiteθmax = 28.3°, θmin = 2.4°
0.3° wide ω exposures scansh = −30→31
16332 measured reflectionsk = −12→12
2855 independent reflectionsl = −13→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.136w = 1/[σ2(Fo2) + (0.0712P)2 + 0.2759P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2855 reflectionsΔρmax = 0.22 e Å3
241 parametersΔρmin = −0.26 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.66852 (7)0.40572 (18)0.75606 (17)0.0504 (4)
H10.67330.50230.77530.061*0.194 (3)
C20.69244 (6)0.29633 (18)0.83061 (16)0.0496 (4)
C30.68653 (7)0.15487 (18)0.80130 (17)0.0517 (4)
H30.70320.08520.85240.062*
C40.65585 (7)0.11617 (18)0.69592 (17)0.0511 (4)
C50.63050 (7)0.21640 (19)0.61822 (16)0.0508 (4)
H50.60980.18900.54680.061*0.806 (3)
C60.63686 (6)0.35912 (17)0.65015 (16)0.0488 (4)
C70.50000.6849 (3)0.25000.0505 (5)
C80.52386 (7)0.76184 (19)0.35141 (16)0.0533 (4)
H80.53970.71270.41980.064*
C90.52404 (7)0.90824 (19)0.35084 (15)0.0533 (4)
H90.54030.95850.41810.064*
C100.50000.9812 (3)0.25000.0515 (6)
N40.50000.5397 (3)0.25000.0760 (7)
H4A0.51480.49360.31270.091*
N50.50001.1374 (3)0.25000.0705 (6)
N10.72518 (7)0.33052 (17)0.94650 (15)0.0607 (4)
N20.64972 (8)−0.03633 (18)0.66686 (19)0.0733 (5)
N30.60883 (7)0.46447 (16)0.56958 (16)0.0598 (4)
O10.67753 (7)0.54438 (16)0.78695 (17)0.0670 (6)0.81 (2)
H1A0.66030.59620.73700.080*0.806 (3)
O20.7225 (5)0.4511 (5)0.9832 (7)0.084 (2)0.55 (3)
O30.7584 (9)0.2434 (12)0.980 (2)0.130 (5)0.55 (3)
O50.6212 (4)−0.0676 (7)0.5744 (6)0.100 (2)0.77 (4)
O40.6739 (6)−0.1218 (7)0.7350 (9)0.108 (2)0.77 (4)
O1'0.6057 (3)0.1603 (7)0.5099 (6)0.079 (3)0.19 (2)
H1'0.61010.07310.50880.119*0.194 (3)
O2'0.7386 (8)0.4462 (8)0.9798 (8)0.093 (3)0.45 (3)
O3'0.7319 (7)0.2298 (7)1.0257 (8)0.082 (3)0.45 (3)
O4'0.6609 (16)−0.120 (3)0.752 (2)0.106 (8)0.23 (4)
O5'0.6331 (17)−0.077 (3)0.5624 (14)0.108 (8)0.23 (4)
O60.58058 (7)0.42228 (16)0.48088 (16)0.0820 (5)
O70.61414 (7)0.59241 (15)0.59443 (18)0.0839 (5)
O80.52462 (9)1.20034 (17)0.33516 (17)0.1041 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0482 (8)0.0479 (9)0.0552 (10)−0.0025 (6)0.0033 (7)−0.0010 (7)
C20.0454 (8)0.0525 (9)0.0508 (9)−0.0017 (7)−0.0013 (7)−0.0044 (7)
C30.0508 (8)0.0497 (9)0.0545 (10)0.0053 (7)−0.0042 (7)−0.0011 (7)
C40.0519 (9)0.0474 (9)0.0541 (10)0.0002 (7)−0.0010 (7)−0.0065 (7)
C50.0465 (8)0.0576 (10)0.0483 (9)−0.0035 (7)−0.0009 (7)−0.0014 (8)
C60.0445 (8)0.0505 (9)0.0515 (10)−0.0010 (7)0.0029 (7)0.0063 (7)
C70.0487 (11)0.0499 (12)0.0531 (13)0.0000.0063 (10)0.000
C80.0554 (9)0.0604 (10)0.0441 (9)0.0068 (7)−0.0050 (7)0.0052 (7)
C90.0587 (10)0.0594 (10)0.0417 (9)0.0001 (7)−0.0079 (7)−0.0046 (7)
C100.0584 (13)0.0478 (12)0.0482 (13)0.000−0.0035 (10)0.000
N40.1002 (18)0.0528 (13)0.0750 (17)0.000−0.0071 (14)0.000
N50.0951 (17)0.0549 (13)0.0614 (14)0.000−0.0084 (13)0.000
N10.0598 (9)0.0596 (9)0.0626 (10)−0.0030 (7)−0.0093 (7)−0.0083 (8)
N20.0863 (12)0.0529 (9)0.0805 (13)0.0035 (9)−0.0180 (10)−0.0131 (9)
N30.0598 (9)0.0540 (9)0.0657 (10)−0.0041 (7)−0.0051 (8)0.0115 (7)
O10.0826 (12)0.0428 (8)0.0757 (12)−0.0040 (7)−0.0190 (9)−0.0021 (7)
O20.103 (4)0.060 (2)0.090 (3)0.002 (3)−0.024 (2)−0.039 (3)
O30.137 (8)0.103 (4)0.149 (9)0.046 (4)−0.097 (7)−0.042 (4)
O50.110 (3)0.066 (2)0.124 (5)0.015 (2)−0.059 (3)−0.038 (3)
O40.151 (4)0.047 (2)0.127 (5)0.0128 (19)−0.064 (4)−0.011 (3)
O1'0.093 (5)0.075 (5)0.070 (5)−0.001 (4)−0.025 (4)0.002 (4)
O2'0.123 (7)0.084 (4)0.073 (3)−0.062 (4)−0.037 (3)0.030 (4)
O3'0.110 (6)0.058 (3)0.078 (4)0.012 (3)−0.040 (3)−0.002 (2)
O4'0.20 (2)0.045 (7)0.068 (8)0.000 (9)0.011 (13)0.001 (5)
O5'0.174 (18)0.098 (13)0.052 (8)−0.035 (11)0.004 (10)−0.026 (7)
O60.1017 (11)0.0681 (9)0.0763 (10)−0.0034 (8)−0.0344 (9)0.0128 (7)
O70.0925 (10)0.0513 (8)0.1079 (12)−0.0020 (7)−0.0244 (9)0.0104 (8)
O80.1598 (18)0.0609 (9)0.0916 (12)−0.0151 (10)−0.0387 (11)−0.0121 (9)

Geometric parameters (Å, °)

C1—O11.351 (2)C9—C101.381 (2)
C1—C21.404 (2)C9—H90.9300
C1—C61.408 (2)C10—C9i1.381 (2)
C1—H10.9300C10—N51.457 (3)
C2—C31.363 (2)N4—H4A0.8600
C2—N11.476 (2)N5—O8i1.2169 (18)
C3—C41.370 (2)N5—O81.2169 (18)
C3—H30.9300N1—O2'1.178 (6)
C4—C51.377 (2)N1—O31.182 (5)
C4—N21.463 (2)N1—O21.191 (5)
C5—C61.382 (2)N1—O3'1.265 (5)
C5—O1'1.382 (6)N2—O41.214 (5)
C5—H50.9300N2—O51.216 (4)
C6—N31.455 (2)N2—O4'1.221 (10)
C7—N41.355 (3)N2—O5'1.225 (10)
C7—C81.402 (2)N3—O61.210 (2)
C7—C8i1.402 (2)N3—O71.228 (2)
C8—C91.366 (2)O1—H1A0.8200
C8—H80.9300O1'—H1'0.8200
O1—C1—C2119.97 (16)C10—C9—H9120.2
O1—C1—C6124.67 (16)C9—C10—C9i120.9 (2)
C2—C1—C6115.35 (15)C9—C10—N5119.56 (11)
C2—C1—H1122.3C9i—C10—N5119.56 (11)
C6—C1—H1122.3C7—N4—H4A120.0
C3—C2—C1122.50 (16)O8i—N5—O8122.3 (3)
C3—C2—N1116.69 (15)O8i—N5—C10118.85 (13)
C1—C2—N1120.81 (15)O8—N5—C10118.85 (13)
C2—C3—C4119.45 (16)O2'—N1—O3111.4 (6)
C2—C3—H3120.3O3—N1—O2126.1 (5)
C4—C3—H3120.3O2'—N1—O3'116.8 (5)
C3—C4—C5121.88 (16)O2—N1—O3'119.7 (6)
C3—C4—N2118.49 (16)O2'—N1—C2125.7 (5)
C5—C4—N2119.63 (16)O3—N1—C2116.3 (4)
C4—C5—C6117.63 (16)O2—N1—C2116.3 (4)
C4—C5—O1'114.4 (3)O3'—N1—C2116.6 (4)
C6—C5—O1'127.7 (3)O4—N2—O5124.9 (4)
C4—C5—H5121.2O5—N2—O4'123.6 (15)
C6—C5—H5121.2O4—N2—O5'118.4 (16)
C5—C6—C1123.16 (15)O4'—N2—O5'122.1 (15)
C5—C6—N3117.44 (15)O4—N2—C4118.0 (4)
C1—C6—N3119.39 (15)O5—N2—C4117.0 (3)
N4—C7—C8120.81 (11)O4'—N2—C4116.7 (13)
N4—C7—C8i120.81 (11)O5'—N2—C4121.3 (13)
C8—C7—C8i118.4 (2)O6—N3—O7122.38 (16)
C9—C8—C7120.67 (16)O6—N3—C6118.48 (15)
C9—C8—H8119.7O7—N3—C6119.13 (16)
C7—C8—H8119.7C1—O1—H1A109.5
C8—C9—C10119.70 (16)C5—O1'—H1'109.5
C8—C9—H9120.2
O1—C1—C2—C3−177.52 (17)C9—C10—N5—O8i−175.18 (14)
C6—C1—C2—C31.3 (2)C9i—C10—N5—O8i4.82 (14)
O1—C1—C2—N13.0 (2)C9—C10—N5—O84.82 (14)
C6—C1—C2—N1−178.16 (14)C9i—C10—N5—O8−175.18 (14)
C1—C2—C3—C4−0.5 (3)C3—C2—N1—O2'173.0 (10)
N1—C2—C3—C4179.01 (15)C1—C2—N1—O2'−7.5 (10)
C2—C3—C4—C5−0.1 (3)C3—C2—N1—O324.2 (17)
C2—C3—C4—N2−179.55 (16)C1—C2—N1—O3−156.3 (17)
C3—C4—C5—C6−0.1 (3)C3—C2—N1—O2−168.1 (6)
N2—C4—C5—C6179.26 (16)C1—C2—N1—O211.4 (6)
C3—C4—C5—O1'174.3 (4)C3—C2—N1—O3'−18.2 (9)
N2—C4—C5—O1'−6.3 (5)C1—C2—N1—O3'161.3 (9)
C4—C5—C6—C11.1 (2)C3—C4—N2—O4−2.7 (9)
O1'—C5—C6—C1−172.5 (5)C5—C4—N2—O4177.9 (9)
C4—C5—C6—N3−178.51 (15)C3—C4—N2—O5178.4 (6)
O1'—C5—C6—N37.9 (5)C5—C4—N2—O5−1.0 (6)
O1—C1—C6—C5177.14 (16)C3—C4—N2—O4'16 (2)
C2—C1—C6—C5−1.6 (2)C5—C4—N2—O4'−163 (2)
O1—C1—C6—N3−3.3 (3)C3—C4—N2—O5'−165 (2)
C2—C1—C6—N3177.95 (14)C5—C4—N2—O5'15 (2)
N4—C7—C8—C9179.68 (12)C5—C6—N3—O61.5 (2)
C8i—C7—C8—C9−0.32 (12)C1—C6—N3—O6−178.11 (17)
C7—C8—C9—C100.6 (2)C5—C6—N3—O7−179.18 (17)
C8—C9—C10—C9i−0.31 (12)C1—C6—N3—O71.2 (2)
C8—C9—C10—N5179.68 (12)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O2ii0.932.553.442 (10)161
C9—H9···O5iii0.932.533.286 (4)139
N4—H4A···O60.862.443.2677 (16)161
O1—H1A···O70.821.852.553 (2)143

Symmetry codes: (ii) −x+3/2, y−1/2, z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2290).

References

  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.
  • Pascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). Chem. Commun. pp. 557–558.
  • Pearson, W. H., Kropf, J. E., Choy, A. L., Lee, I. Y. & Kampf, J. W. (2007). J. Org. Chem.72, 4135–4148. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, Q. R., Li, Z., Yang, H. Y., Li, F., Ding, Z. B. & Tao, F. G. (2003). Synthesis, pp. 1231–1235.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography