PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2581.
Published online 2009 September 30. doi:  10.1107/S160053680903846X
PMCID: PMC2970203

N-(2-Pyridylmeth­yl)phthalimide

Abstract

In the title compound, C14H10N2O2, the phtalimide and 2-pyridylmethyl units are almost perpendicular, with an inter­planar angle of 85.74 (2)°. In the crystal, mol­ecules are linked by weak C—H(...)O inter­actions, forming chains running along the b axis. The packing is further stabilized by offset π–π inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.855 (2) Å.

Related literature

For general backround to phthalimides, see: Ing & Manske (1926 [triangle]); Gibson & Bradshaw (1968 [triangle]); Ishii & Sakaguchi (2004 [triangle]). For their applications in photochemical synthesis and catalytic and chiral reactions, see: Yoon & Mariano (2001 [triangle]); Huang et al. (2006 [triangle]); Rodríguez et al. 2006 [triangle]. For their biological activity, see: Miyachi et al. (1997 [triangle]); Vázquez et al. (2005 [triangle]). For phthalimide derivatives, see: Vamecq et al. (2000 [triangle]). For analysis of hydrogen-bonding patterns, see: Hunter (1994 [triangle]); Desiraju (1991 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2581-scheme1.jpg

Experimental

Crystal data

  • C14H10N2O2
  • M r = 238.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2581-efi4.jpg
  • a = 11.7734 (18) Å
  • b = 14.239 (2) Å
  • c = 7.0698 (11) Å
  • β = 106.373 (3)°
  • V = 1137.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.45 × 0.28 × 0.19 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.958, T max = 0.982
  • 7150 measured reflections
  • 1994 independent reflections
  • 1567 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.155
  • S = 1.20
  • 1994 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus-NT (Bruker, 2001 [triangle]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903846X/fl2266sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903846X/fl2266Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by CONACyT, Mexico (grant No. 49997Q). OGB also thanks CONACyT for a thesis fellowship.

supplementary crystallographic information

Comment

Phthalimides are indispensable in protection and deprotection of primary amines (Ing & Manske, 1926; Gibson & Bradshaw, 1968; Ishii & Sakaguchi, 2004). Phthalimide derivatives are useful in photochemical synthesis (Yoon & Mariano, 2001) and catalytic reactions (Huang et al., 2006; Rodríguez et al., 2006). Some of the phthalimide derivatives have applications as drugs (Vamecq et al., 2000). Thus, they have been used as novel biological modifiers for tumor necrosis (Miyachi et al., 1997). Their fluorescence properties are highly environment sensitive (Vázquez et al., 2005) and find application as biological probes. In our ongoing research on phthalimides as intermediates in supramolecular host design, we have synthesized the title compound, (I).

In (I), all bond lengths and angles show normal values. The phtalimide and 2-pyridylmethyl moieties are almost pependicular with an interplanar angle of 85.74° (Fig.1).

In the crystal, molecules are linked by weak C—H···O interactions (Table 1) (Desiraju, 1991; Hunter, 1994), forming chains running along the b axis.

In the hydrogen-bonding pattern, two graph sets (Bernstein et al., 1995) can be distinguished: R22(10), involving atoms (···H6/C6—C8/O2···H3/C3—C1/O1)and R22(16), involving atoms (···H14/C14/N2/C10/C9/N1/C1/O1···)2. Both patterns R22(10) and R22(16) are linked through weak C—H···O···H—C three center interactions, generating a motif belonging to the unitary graph set R64(30) (Fig. 2).

The packing is further stabilized by aromatic π-π interactions, with distances between the centroids of the pyridine rings [Cg1, Cg1'i (symmetry code: (i) 1 - x, -y, -z)] of 3.855 Å (Fig. 2).

Experimental

A solution of 2-aminomethyl-pyridine (1 g, 9.25 mmol) in dimethylformamide(DMF) (5 ml) was added dropwise to (1.36 g, 9.18 mmol) of phthalic anhydride dissolved in 10 ml of DMF and refluxed for 6 h. The resulting solution was concentrated under reduced pressure to a viscous yellow liquid. Addition of water (25 ml) gave a colorless solid which was recovered by filtration and dried under vacuum. The product was recrystallized from ethanol to give suitable crystals for X-ray diffraction analysis (m.p. 399 K)

Refinement

Non-hydrogen atoms were refined anisotropically. Aromatic and methylene H atoms were positioned geometrically and constrained using the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl) = 1.2 Ueq(Caryl); C—Hmethylene = 0.97 Å, Uiso(Hmethylene) = 1.2 Ueq(Cmethylene)], but the coordinates were refined freely.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
A view of the hydrogen bonds (dotted lines) in (I), showing the C3—H3···O2, C6—H6···O1, C14—H14···O1 interactions and the R22(10), R22(16), R64(30) motifs. ...

Crystal data

C14H10N2O2F(000) = 496
Mr = 238.24Dx = 1.392 Mg m3
Monoclinic, P21/cMelting point: 399 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.7734 (18) ÅCell parameters from 2665 reflections
b = 14.239 (2) Åθ = 2.3–26.8°
c = 7.0698 (11) ŵ = 0.10 mm1
β = 106.373 (3)°T = 293 K
V = 1137.1 (3) Å3Prism, colourless
Z = 40.45 × 0.28 × 0.19 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer1994 independent reflections
Radiation source: fine-focus sealed tube1567 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 1.8°
[var phi] and ω scansh = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −16→16
Tmin = 0.958, Tmax = 0.982l = −8→8
7150 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.20w = 1/[σ2(Fo2) + (0.0705P)2 + 0.1417P] where P = (Fo2 + 2Fc2)/3
1994 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8978 (2)0.03798 (15)0.1337 (3)0.0493 (6)
C21.01324 (19)0.07017 (14)0.2618 (3)0.0456 (5)
C31.1103 (2)0.01983 (16)0.3657 (3)0.0533 (6)
H31.1100−0.04550.36650.064*
C41.2086 (2)0.07039 (18)0.4690 (3)0.0613 (7)
H41.27600.03840.53990.074*
C51.2088 (2)0.16764 (17)0.4691 (3)0.0612 (6)
H51.27610.19970.54050.073*
C61.1106 (2)0.21791 (16)0.3648 (3)0.0557 (6)
H61.11050.28320.36460.067*
C71.01340 (18)0.16754 (14)0.2616 (3)0.0466 (5)
C80.8971 (2)0.19976 (15)0.1347 (3)0.0515 (6)
C90.7148 (2)0.11883 (15)−0.0729 (3)0.0576 (6)
H9A0.70480.0621−0.15170.069*
H9B0.70750.1718−0.16170.069*
C100.61635 (19)0.12393 (13)0.0243 (3)0.0484 (6)
C110.6362 (2)0.13358 (14)0.2231 (3)0.0573 (6)
H110.71280.13800.30660.069*
C120.5388 (3)0.13668 (17)0.2973 (4)0.0705 (7)
H120.54890.14370.43190.085*
C130.4280 (2)0.12929 (16)0.1695 (5)0.0708 (7)
H130.36140.13030.21560.085*
C140.4168 (2)0.12042 (16)−0.0258 (4)0.0672 (7)
H140.34100.1159−0.11180.081*
N10.83334 (16)0.11904 (11)0.0626 (3)0.0530 (5)
N20.50806 (18)0.11779 (12)−0.1016 (3)0.0610 (6)
O10.86171 (15)−0.04110 (11)0.0924 (2)0.0652 (5)
O20.85977 (15)0.27886 (11)0.0976 (2)0.0681 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0604 (15)0.0411 (13)0.0521 (13)−0.0013 (10)0.0249 (11)0.0003 (10)
C20.0532 (13)0.0419 (12)0.0483 (12)0.0033 (10)0.0251 (10)0.0040 (9)
C30.0655 (16)0.0427 (12)0.0571 (13)0.0090 (11)0.0260 (12)0.0072 (10)
C40.0564 (15)0.0678 (17)0.0592 (14)0.0082 (12)0.0154 (12)0.0116 (12)
C50.0554 (15)0.0658 (17)0.0603 (14)−0.0079 (12)0.0126 (12)0.0027 (12)
C60.0610 (15)0.0447 (13)0.0630 (14)−0.0036 (11)0.0201 (12)0.0014 (11)
C70.0528 (13)0.0407 (12)0.0507 (12)0.0014 (9)0.0217 (10)0.0034 (9)
C80.0566 (14)0.0404 (13)0.0608 (14)0.0018 (10)0.0218 (11)0.0040 (10)
C90.0572 (14)0.0559 (15)0.0555 (13)−0.0027 (11)0.0088 (11)0.0002 (10)
C100.0528 (13)0.0335 (12)0.0540 (12)0.0012 (9)0.0069 (10)0.0016 (9)
C110.0575 (14)0.0506 (14)0.0571 (13)−0.0010 (11)0.0052 (11)−0.0051 (10)
C120.088 (2)0.0634 (17)0.0610 (15)0.0016 (14)0.0220 (15)−0.0102 (12)
C130.0612 (16)0.0625 (17)0.091 (2)0.0054 (12)0.0250 (15)−0.0024 (14)
C140.0513 (15)0.0626 (17)0.0794 (18)−0.0002 (11)0.0050 (13)0.0013 (13)
N10.0516 (11)0.0409 (11)0.0647 (12)−0.0015 (8)0.0135 (9)0.0013 (8)
N20.0555 (12)0.0563 (13)0.0627 (12)−0.0001 (9)0.0029 (10)0.0025 (9)
O10.0795 (12)0.0428 (10)0.0732 (11)−0.0070 (8)0.0214 (9)−0.0059 (8)
O20.0689 (11)0.0409 (10)0.0873 (12)0.0063 (8)0.0100 (9)0.0071 (8)

Geometric parameters (Å, °)

C1—O11.210 (3)C8—N11.389 (3)
C1—N11.395 (3)C9—N11.453 (3)
C1—C21.477 (3)C9—C101.506 (3)
C2—C31.374 (3)C9—H9A0.9700
C2—C71.386 (3)C9—H9B0.9700
C3—C41.383 (3)C10—N21.336 (3)
C3—H30.9300C10—C111.366 (3)
C4—C51.385 (4)C11—C121.391 (3)
C4—H40.9300C11—H110.9300
C5—C61.382 (3)C12—C131.365 (4)
C5—H50.9300C12—H120.9300
C6—C71.373 (3)C13—C141.356 (4)
C6—H60.9300C13—H130.9300
C7—C81.483 (3)C14—N21.329 (3)
C8—O21.210 (2)C14—H140.9300
O1—C1—N1124.4 (2)N1—C9—H9A108.6
O1—C1—C2129.5 (2)C10—C9—H9A108.6
N1—C1—C2106.10 (18)N1—C9—H9B108.6
C3—C2—C7121.4 (2)C10—C9—H9B108.6
C3—C2—C1130.5 (2)H9A—C9—H9B107.5
C7—C2—C1108.13 (18)N2—C10—C11123.1 (2)
C2—C3—C4117.2 (2)N2—C10—C9113.95 (19)
C2—C3—H3121.4C11—C10—C9122.9 (2)
C4—C3—H3121.4C10—C11—C12118.1 (2)
C3—C4—C5121.5 (2)C10—C11—H11120.9
C3—C4—H4119.3C12—C11—H11120.9
C5—C4—H4119.3C13—C12—C11118.9 (3)
C6—C5—C4121.1 (2)C13—C12—H12120.5
C6—C5—H5119.4C11—C12—H12120.5
C4—C5—H5119.4C14—C13—C12118.8 (2)
C7—C6—C5117.3 (2)C14—C13—H13120.6
C7—C6—H6121.3C12—C13—H13120.6
C5—C6—H6121.3N2—C14—C13123.8 (2)
C6—C7—C2121.5 (2)N2—C14—H14118.1
C6—C7—C8130.5 (2)C13—C14—H14118.1
C2—C7—C8107.97 (19)C8—N1—C1111.69 (19)
O2—C8—N1124.4 (2)C8—N1—C9124.25 (18)
O2—C8—C7129.5 (2)C1—N1—C9124.06 (18)
N1—C8—C7106.11 (18)C14—N2—C10117.2 (2)
N1—C9—C10114.79 (19)
O1—C1—C2—C30.9 (4)N1—C9—C10—C113.7 (3)
N1—C1—C2—C3−178.73 (19)N2—C10—C11—C120.3 (3)
O1—C1—C2—C7179.4 (2)C9—C10—C11—C12−179.42 (19)
N1—C1—C2—C7−0.2 (2)C10—C11—C12—C130.5 (3)
C7—C2—C3—C4−0.5 (3)C11—C12—C13—C14−0.9 (4)
C1—C2—C3—C4177.91 (19)C12—C13—C14—N20.5 (4)
C2—C3—C4—C50.5 (3)O2—C8—N1—C1−178.6 (2)
C3—C4—C5—C6−0.3 (3)C7—C8—N1—C10.7 (2)
C4—C5—C6—C70.0 (3)O2—C8—N1—C92.3 (3)
C5—C6—C7—C20.1 (3)C7—C8—N1—C9−178.38 (18)
C5—C6—C7—C8−178.8 (2)O1—C1—N1—C8−180.0 (2)
C3—C2—C7—C60.2 (3)C2—C1—N1—C8−0.3 (2)
C1—C2—C7—C6−178.53 (18)O1—C1—N1—C9−0.9 (3)
C3—C2—C7—C8179.31 (18)C2—C1—N1—C9178.74 (18)
C1—C2—C7—C80.6 (2)C10—C9—N1—C8−87.1 (2)
C6—C7—C8—O2−2.5 (4)C10—C9—N1—C193.9 (2)
C2—C7—C8—O2178.4 (2)C13—C14—N2—C100.3 (3)
C6—C7—C8—N1178.2 (2)C11—C10—N2—C14−0.7 (3)
C2—C7—C8—N1−0.8 (2)C9—C10—N2—C14179.06 (18)
N1—C9—C10—N2−176.06 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.452 (3)171
C6—H6···O1ii0.932.533.452 (3)171
C14—H14···O1iii0.932.653.373 (3)135
C11—H11···O2iv0.932.573.401 (3)148

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2266).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT-Plus-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (1991). Acc. Chem Res 24, 290-296.
  • Gibson, M. S. & Bradshaw, R. W. (1968). Angew. Chem. Int. Ed. Engl 7, 919–930.
  • Huang, H., Liu, X., Deng, J., Qui, M. & Zheng, Z. (2006). Org. Lett 8, 3359–3362. [PubMed]
  • Hunter, C. A. (1994). Chem. Soc. Rev. pp. 101–109.
  • Ing, H. R. & Manske, R. H. F. (1926). J. Chem. Soc pp. 2349–2351.
  • Ishii, Y. & Sakaguchi, S. (2004). Modern Oxidation Methods, edited by J.-E. Backvall, pp. 119–163. Weinheim: Wiley-VCH Verlag GmbH & Co.
  • Miyachi, H., Azma, A. & Hashimoto, Y. (1997). Yakugaku Zasshi, 117, 91–107. [PubMed]
  • Rodríguez, B., Rantanen, T. & Bolm, C. (2006). Angew. Chem. Int. Ed 45, 6924–6926. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vamecq, J., Bac, P., Herrenknecht, C., Maurois, P., Delcourt, P. & Stables, J. P. (2000). J. Med. Chem 43, 1311–1319. [PubMed]
  • Vázquez, M. E., Blanco, J. B. & Imperiali, B. (2005). J. Am. Chem. Soc 127, 1300–1306. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.
  • Yoon, U. C. & Mariano, P. S. (2001). Acc. Chem. Res 34, 523-533. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography