PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2571.
Published online 2009 September 30. doi:  10.1107/S1600536809038689
PMCID: PMC2970198

Cyclo­hexane-1,2-diammonium bis­(pyridine-2-carboxyl­ate)

Abstract

In the dication of the title salt, C6H16N2 2+·2C6H4NO2 , the two ammonium groups are in the equatorial positions of the chair-shaped cyclo­hexyl ring. In the crystal, the cations and anions are linked by N—H(...)O and N—H(...)N hydrogen bonds, forming a layer network parallel to the ac plane. Weak π–π inter­actions between adjacent pyridine rings with a centroid–centroid distance of 3.589 (2) Å are also present.

Related literature

For the syntheses and structures of cyclo­hexane-1,2-diammonium compounds, see: Lin & Lii (1998 [triangle]); Lin & Wang (2000 [triangle]). For the crystal structures of pyridine-2-carboxyl­ates, see: Kim & Ha (2009a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2571-scheme1.jpg

Experimental

Crystal data

  • C6H16N2 2+·2C6H4NO2
  • M r = 360.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2571-efi1.jpg
  • a = 9.2942 (11) Å
  • b = 20.329 (2) Å
  • c = 10.2189 (11) Å
  • β = 101.775 (3)°
  • V = 1890.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: none
  • 11005 measured reflections
  • 3854 independent reflections
  • 1741 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.171
  • S = 0.98
  • 3854 reflections
  • 237 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809038689/ng2649sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038689/ng2649Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

supplementary crystallographic information

Comment

The title compound, C6H16N22+.2C6H4NO2-, consists of a doubly protonated cyclohexane-1,2-diammonium dication and two pyridine-2-carboxylate anions (Fig. 1). The dication has two chiral carbon atoms (C1 and C2), and is one of four possible stereoisomers. Both chiral atoms have R configuration. The cyclohexane ring of the dication adopts a strain-free chair conformation. The C—C—C bond angles lie in the range of 109.3 (3)°–111.6 (3)°, close to the ideal tetrahedral angle, and all neighboring C—H bonds are staggered. The diammonium groups within the dication are on opposite faces of the cyclohexane ring, that is, trans with respect to each other, and therefore the dication exists in the diequatorial conformation. The N1—C1—C2—N2 torsion angle of -59.0 (3)° displays the gauche conformation for the four atoms and there is a gauche interaction between the two NH3+ groups. The carboxylate groups of the anions appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.239 (3)–1.255 (3) Å]. In the crystal structure, the component ions interact by means of many intermolecular N—H···O and N—H···N hydrogen bonds to form a two-dimensional network parallel to the ac plane (Table 1 and Fig. 2). There may also be intermolecular π-π interactions between adjacent pyridine rings, with a centroid-centroid distance of 3.589 (2) Å.

Experimental

A solution of a mixture of cis and trans isomers of 1,2-diaminocyclohexane (0.202 g, 1.769 mmol) and pyridine-2-carboxylic acid (0.294 g, 2.388 mmol) in H2O (10 ml) was stirred for 3 h at 60 °C. The solvent was removed under vacuum and the residue was washed with ether/acetone/CHCl3, to give a white powder (0.112 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.98 (CH), 0.97 (CH2) or 0.93 (aromatic) Å and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C, N)].

Figures

Fig. 1.
The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
Fig. 2.
View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

C6H16N22+·2C6H4NO2F(000) = 768
Mr = 360.41Dx = 1.267 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 784 reflections
a = 9.2942 (11) Åθ = 2.3–17.2°
b = 20.329 (2) ŵ = 0.09 mm1
c = 10.2189 (11) ÅT = 293 K
β = 101.775 (3)°Rod, colorless
V = 1890.1 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer1741 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
graphiteθmax = 26.4°, θmin = 2.3°
[var phi] and ω scansh = −11→11
11005 measured reflectionsk = −25→25
3854 independent reflectionsl = −12→7

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0581P)2] where P = (Fo2 + 2Fc2)/3
3854 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5813 (2)0.56693 (10)0.5900 (2)0.0580 (6)
O20.6448 (3)0.60901 (12)0.7932 (2)0.0874 (9)
O30.9341 (2)0.53730 (12)1.1294 (2)0.0629 (7)
O40.7329 (2)0.53120 (12)1.2114 (2)0.0705 (7)
N10.7776 (2)0.49308 (12)0.8877 (2)0.0497 (7)
H1A0.82520.50930.96170.060*
H1B0.72470.52330.84250.060*
H1C0.83870.47800.84230.060*
N20.5142 (2)0.44461 (12)0.6901 (2)0.0515 (7)
H2A0.48870.42320.61640.062*
H2B0.56330.47900.67680.062*
H2C0.43700.45630.71820.062*
N30.4687 (3)0.68504 (14)0.4928 (3)0.0660 (8)
N41.1006 (3)0.56390 (14)1.3686 (3)0.0606 (8)
C10.6809 (3)0.43883 (15)0.9164 (3)0.0469 (8)
H10.60480.45730.95930.056*
C20.6076 (3)0.40179 (15)0.7922 (3)0.0494 (8)
H20.68440.38200.75190.059*
C30.5124 (4)0.34650 (16)0.8301 (3)0.0646 (10)
H3A0.43530.36520.86980.078*
H3B0.46640.32270.75030.078*
C40.6042 (4)0.29907 (18)0.9290 (4)0.0789 (11)
H4A0.54080.26570.95500.095*
H4B0.67540.27720.88650.095*
C50.6839 (5)0.33547 (18)1.0523 (3)0.0802 (12)
H5A0.61280.35291.10070.096*
H5B0.74740.30521.11080.096*
C60.7750 (4)0.39129 (16)1.0134 (3)0.0625 (10)
H6A0.85160.37330.97220.075*
H6B0.82190.41501.09310.075*
C70.4020 (5)0.74176 (19)0.4510 (4)0.0801 (12)
H70.36410.74650.36000.096*
C80.3859 (5)0.79253 (18)0.5318 (4)0.0832 (12)
H80.33720.83070.49770.100*
C90.4430 (5)0.78617 (18)0.6647 (4)0.0863 (13)
H90.43440.82030.72310.104*
C100.5136 (4)0.72897 (17)0.7119 (3)0.0668 (10)
H100.55460.72410.80240.080*
C110.5224 (3)0.67897 (15)0.6232 (3)0.0493 (8)
C120.5894 (3)0.61329 (16)0.6723 (4)0.0542 (9)
C131.1815 (4)0.58402 (19)1.4852 (4)0.0769 (11)
H131.28330.58321.49580.092*
C141.1234 (4)0.60559 (18)1.5892 (4)0.0715 (11)
H141.18460.61961.66780.086*
C150.9757 (5)0.60653 (18)1.5775 (4)0.0723 (11)
H150.93380.62121.64740.087*
C160.8879 (4)0.58488 (17)1.4573 (3)0.0646 (10)
H160.78610.58431.44630.078*
C170.9540 (3)0.56461 (14)1.3564 (3)0.0452 (8)
C180.8658 (4)0.54258 (15)1.2225 (3)0.0496 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0663 (15)0.0528 (14)0.0526 (14)0.0046 (11)0.0071 (11)−0.0075 (11)
O20.126 (2)0.0742 (18)0.0482 (16)0.0264 (16)−0.0142 (15)−0.0071 (12)
O30.0525 (14)0.0915 (18)0.0459 (14)−0.0065 (12)0.0128 (11)−0.0127 (12)
O40.0427 (14)0.102 (2)0.0660 (17)−0.0010 (13)0.0095 (12)−0.0170 (13)
N10.0466 (16)0.0592 (17)0.0403 (15)0.0014 (13)0.0018 (12)−0.0019 (12)
N20.0448 (15)0.0642 (18)0.0444 (16)−0.0042 (13)0.0061 (12)−0.0097 (13)
N30.077 (2)0.062 (2)0.053 (2)0.0113 (16)−0.0005 (15)−0.0010 (14)
N40.0504 (18)0.078 (2)0.0512 (18)−0.0100 (15)0.0052 (14)−0.0030 (14)
C10.0436 (18)0.055 (2)0.0424 (19)−0.0030 (16)0.0109 (15)0.0000 (15)
C20.0467 (18)0.057 (2)0.0450 (19)0.0038 (16)0.0096 (15)−0.0014 (15)
C30.069 (2)0.065 (2)0.062 (2)−0.014 (2)0.0177 (19)−0.0052 (18)
C40.105 (3)0.061 (2)0.072 (3)−0.006 (2)0.021 (2)0.007 (2)
C50.111 (3)0.069 (3)0.061 (3)0.002 (2)0.018 (2)0.013 (2)
C60.073 (2)0.062 (2)0.050 (2)0.0062 (19)0.0045 (17)0.0067 (17)
C70.104 (3)0.070 (3)0.058 (3)0.012 (2)−0.002 (2)0.001 (2)
C80.107 (3)0.056 (3)0.083 (3)0.012 (2)0.011 (3)0.004 (2)
C90.132 (4)0.048 (2)0.081 (3)0.005 (2)0.025 (3)−0.016 (2)
C100.086 (3)0.054 (2)0.058 (2)−0.002 (2)0.0076 (19)−0.0057 (18)
C110.0482 (19)0.050 (2)0.050 (2)−0.0064 (16)0.0087 (16)−0.0029 (16)
C120.052 (2)0.057 (2)0.052 (2)−0.0021 (17)0.0063 (17)−0.0047 (18)
C130.059 (2)0.106 (3)0.062 (3)−0.019 (2)0.004 (2)−0.004 (2)
C140.079 (3)0.088 (3)0.045 (2)−0.022 (2)0.006 (2)−0.0053 (19)
C150.083 (3)0.083 (3)0.056 (3)0.001 (2)0.028 (2)−0.0101 (19)
C160.054 (2)0.087 (3)0.056 (2)−0.0048 (19)0.0173 (19)−0.0143 (19)
C170.046 (2)0.0454 (19)0.043 (2)−0.0001 (15)0.0074 (15)0.0047 (14)
C180.044 (2)0.053 (2)0.051 (2)0.0054 (16)0.0081 (17)−0.0018 (16)

Geometric parameters (Å, °)

O1—C121.255 (3)C4—H4A0.9700
O2—C121.241 (3)C4—H4B0.9700
O3—C181.251 (3)C5—C61.517 (5)
O4—C181.239 (3)C5—H5A0.9700
N1—C11.489 (3)C5—H5B0.9700
N1—H1A0.8600C6—H6A0.9700
N1—H1B0.8600C6—H6B0.9700
N1—H1C0.8600C7—C81.349 (5)
N2—C21.493 (3)C7—H70.9300
N2—H2A0.8600C8—C91.359 (5)
N2—H2B0.8600C8—H80.9300
N2—H2C0.8600C9—C101.374 (5)
N3—C111.330 (4)C9—H90.9300
N3—C71.337 (4)C10—C111.376 (4)
N4—C131.337 (4)C10—H100.9300
N4—C171.343 (4)C11—C121.515 (4)
C1—C21.513 (4)C13—C141.359 (5)
C1—C61.526 (4)C13—H130.9300
C1—H10.9800C14—C151.353 (5)
C2—C31.528 (4)C14—H140.9300
C2—H20.9800C15—C161.400 (4)
C3—C41.525 (4)C15—H150.9300
C3—H3A0.9700C16—C171.368 (4)
C3—H3B0.9700C16—H160.9300
C4—C51.517 (5)C17—C181.512 (4)
C1—N1—H1A109.5H5A—C5—H5B108.1
C1—N1—H1B109.5C5—C6—C1111.6 (3)
H1A—N1—H1B109.5C5—C6—H6A109.3
C1—N1—H1C109.5C1—C6—H6A109.3
H1A—N1—H1C109.5C5—C6—H6B109.3
H1B—N1—H1C109.5C1—C6—H6B109.3
C2—N2—H2A109.5H6A—C6—H6B108.0
C2—N2—H2B109.5N3—C7—C8124.5 (4)
H2A—N2—H2B109.5N3—C7—H7117.8
C2—N2—H2C109.5C8—C7—H7117.8
H2A—N2—H2C109.5C7—C8—C9118.0 (4)
H2B—N2—H2C109.5C7—C8—H8121.0
C11—N3—C7117.1 (3)C9—C8—H8121.0
C13—N4—C17117.1 (3)C8—C9—C10119.5 (3)
N1—C1—C2112.9 (2)C8—C9—H9120.2
N1—C1—C6108.0 (2)C10—C9—H9120.2
C2—C1—C6109.3 (3)C9—C10—C11118.8 (3)
N1—C1—H1108.9C9—C10—H10120.6
C2—C1—H1108.9C11—C10—H10120.6
C6—C1—H1108.9N3—C11—C10122.1 (3)
N2—C2—C1113.2 (2)N3—C11—C12117.3 (3)
N2—C2—C3108.8 (2)C10—C11—C12120.6 (3)
C1—C2—C3109.8 (2)O2—C12—O1124.8 (3)
N2—C2—H2108.3O2—C12—C11116.8 (3)
C1—C2—H2108.3O1—C12—C11118.4 (3)
C3—C2—H2108.3N4—C13—C14123.7 (4)
C4—C3—C2111.0 (3)N4—C13—H13118.2
C4—C3—H3A109.4C14—C13—H13118.2
C2—C3—H3A109.4C15—C14—C13119.6 (3)
C4—C3—H3B109.4C15—C14—H14120.2
C2—C3—H3B109.4C13—C14—H14120.2
H3A—C3—H3B108.0C14—C15—C16118.2 (3)
C5—C4—C3110.7 (3)C14—C15—H15120.9
C5—C4—H4A109.5C16—C15—H15120.9
C3—C4—H4A109.5C17—C16—C15119.0 (3)
C5—C4—H4B109.5C17—C16—H16120.5
C3—C4—H4B109.5C15—C16—H16120.5
H4A—C4—H4B108.1N4—C17—C16122.4 (3)
C6—C5—C4110.6 (3)N4—C17—C18115.7 (3)
C6—C5—H5A109.5C16—C17—C18121.9 (3)
C4—C5—H5A109.5O4—C18—O3124.4 (3)
C6—C5—H5B109.5O4—C18—C17119.0 (3)
C4—C5—H5B109.5O3—C18—C17116.6 (3)
N1—C1—C2—N2−59.0 (3)C9—C10—C11—C12−175.5 (3)
C6—C1—C2—N2−179.2 (2)N3—C11—C12—O2177.0 (3)
N1—C1—C2—C3179.2 (2)C10—C11—C12—O2−5.3 (5)
C6—C1—C2—C359.0 (3)N3—C11—C12—O1−5.1 (4)
N2—C2—C3—C4177.0 (3)C10—C11—C12—O1172.6 (3)
C1—C2—C3—C4−58.6 (4)C17—N4—C13—C14−0.9 (5)
C2—C3—C4—C556.3 (4)N4—C13—C14—C150.9 (6)
C3—C4—C5—C6−54.9 (4)C13—C14—C15—C160.1 (6)
C4—C5—C6—C156.8 (4)C14—C15—C16—C17−0.9 (5)
N1—C1—C6—C5177.9 (3)C13—N4—C17—C160.1 (5)
C2—C1—C6—C5−58.9 (4)C13—N4—C17—C18179.1 (3)
C11—N3—C7—C8−0.1 (6)C15—C16—C17—N40.8 (5)
N3—C7—C8—C91.0 (7)C15—C16—C17—C18−178.1 (3)
C7—C8—C9—C10−0.4 (6)N4—C17—C18—O4167.7 (3)
C8—C9—C10—C11−1.0 (6)C16—C17—C18—O4−13.2 (5)
C7—N3—C11—C10−1.5 (5)N4—C17—C18—O3−12.5 (4)
C7—N3—C11—C12176.2 (3)C16—C17—C18—O3166.5 (3)
C9—C10—C11—N32.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.861.892.749 (3)175
N1—H1B···O20.861.922.743 (3)160
N1—H1C···O3i0.862.102.790 (3)137
N1—H1C···N4i0.862.493.271 (4)152
N2—H2A···O1ii0.862.092.828 (3)144
N2—H2A···N3ii0.862.533.254 (4)142
N2—H2B···O10.862.022.807 (3)152
N2—H2C···O4iii0.861.882.734 (3)171

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2649).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kim, N.-H. & Ha, K. (2009a). Acta Cryst. E65, o1415. [PMC free article] [PubMed]
  • Kim, N.-H. & Ha, K. (2009b). Acta Cryst. E65, o2151. [PMC free article] [PubMed]
  • Kim, N.-H. & Ha, K. (2009c). Acta Cryst. E65, o2504. [PMC free article] [PubMed]
  • Lin, H.-M. & Lii, K.-H. (1998). Inorg. Chem.37, 4220–4222. [PubMed]
  • Lin, C.-H. & Wang, S.-L. (2000). Chem. Mater.12, 3617–3623.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography