PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1202.
Published online 2009 September 12. doi:  10.1107/S1600536809031432
PMCID: PMC2970197

{2,2′-[(5-Bromo­pyridine-2,3-di­yl)bis­(nitrilo­methyl­idyne)]diphenolato}chlorido(N,N-dimethyl­formamide)iron(III)

Abstract

In the title complex, [Fe(C19H12BrClN3O2)(C3H7NO)], the FeIII atom is coordinated by an N,N,O,O-tetra­dentate Schiff base ligand and trans coordinated by a chloride anion and the O atom of an N,N-dimethyl­formamide mol­ecule. The resulting geometry is distorted octa­hedral within a ClN2O3 donor set.

Related literature

For the optical, electronic, magnetic, biological and catalytic properties of complexes containing salicylaldehyde ligands, see: Alam et al. (2003 [triangle]); Oshiob et al. (2005 [triangle]); Zelewsky & von Knof (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1202-scheme1.jpg

Experimental

Crystal data

  • [Fe(C19H12BrClN3O2)(C3H7NO)]
  • M r = 558.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1202-efi1.jpg
  • a = 13.1626 (11) Å
  • b = 15.3553 (13) Å
  • c = 12.6376 (11) Å
  • β = 118.186 (1)°
  • V = 2251.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.60 mm−1
  • T = 293 K
  • 0.21 × 0.15 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.612, T max = 0.763
  • 11869 measured reflections
  • 4421 independent reflections
  • 3468 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.117
  • S = 1.04
  • 4421 reflections
  • 291 parameters
  • H-atom parameters constrained
  • Δρmax = 1.35 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031432/tk2520sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031432/tk2520Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Postdoctoral Scientific Special Foundation of China (No. 200801414) and the Postdoctoral Scientific Foundation of Shandong Province (No. 200701010). The authors also acknowledge Jining University and Shandong University for support of this work.

supplementary crystallographic information

Comment

The synthesis of complexes containing salicylaldehyde ligands has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, biological, and catalytic properties (Alam et al., 2003; Zelewsky et al., 1999; Oshiob et al., 2005). In the present paper, we describe the synthesis and structural characterization of the title compound, (I).

In (I), the FeIII atom is tetracoordinated by Schiff base ligand via two N and two O atoms, Fig. 1. In addition the metal centre is coordinated by a Cl anion and the O atom of a N,N-dimethylformamide molecule. The resulting coordination geometry is based on a distorted octahedron in which the Cl and N,N-dimethylformamide-O atoms define axial sites.

Experimental

Condensation of 4-bromo-o-phenylenediamine with salicylaldehyde in a 1:2 molar ratio in ethanol gave the Schiff base ligand. FeCl3 (0.1 mmol) was added dropwise to a solution of the Schiff base (0.1 mmol) in methanol. The resulting solution was stirred at room temperature for 30 minutes. After filtering, the insoluble solids were dissolved in DMF and ether. The product was isolated red-brown crystals in a yield of 45% after a few weeks.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.93–0.96 Å) and were treated as riding on their parent atoms with U(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.35 and 0.39 eÅ-3, respectively, were located 1.07 Å and 0.69 Å from the H5 and Br1 atoms, respectively.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Crystal data

[Fe(C19H12BrClN3O2)(C3H7NO)]Z = 4
Mr = 558.62F(000) = 1122
Monoclinic, P21/cDx = 1.647 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.1626 (11) ŵ = 2.60 mm1
b = 15.3553 (13) ÅT = 293 K
c = 12.6376 (11) ÅBlock, red-brown
β = 118.186 (1)°0.21 × 0.15 × 0.11 mm
V = 2251.4 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4421 independent reflections
Radiation source: fine-focus sealed tube3468 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.612, Tmax = 0.763k = −14→18
11869 measured reflectionsl = −15→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0664P)2 + 1.0974P] where P = (Fo2 + 2Fc2)/3
4421 reflections(Δ/σ)max = 0.002
291 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.81172 (4)0.45734 (3)0.12689 (4)0.04193 (15)
Br10.45611 (3)0.63148 (3)0.36373 (4)0.06309 (16)
Cl10.68099 (7)0.34010 (6)0.05361 (9)0.0584 (3)
O10.94591 (19)0.38509 (16)0.1821 (2)0.0511 (6)
O20.78233 (19)0.49869 (16)−0.0266 (2)0.0505 (6)
O30.9319 (2)0.56438 (16)0.2007 (2)0.0555 (6)
N10.8280 (2)0.45132 (16)0.3011 (2)0.0412 (6)
N20.6755 (2)0.54061 (16)0.1157 (2)0.0401 (6)
N31.0807 (2)0.63665 (18)0.1998 (3)0.0498 (7)
N40.7329 (2)0.48025 (19)0.4177 (3)0.0501 (7)
C10.7382 (3)0.4908 (2)0.3158 (3)0.0410 (7)
C20.6585 (3)0.53962 (19)0.2178 (3)0.0394 (7)
C30.5712 (3)0.5822 (2)0.2311 (3)0.0450 (7)
H30.51630.61580.16940.054*
C40.5694 (3)0.5727 (2)0.3380 (3)0.0472 (8)
C50.6484 (3)0.5206 (2)0.4282 (3)0.0515 (8)
H50.64260.51350.49820.062*
C60.9158 (3)0.4183 (2)0.3952 (3)0.0452 (7)
H60.91720.42510.46900.054*
C71.0095 (3)0.3728 (2)0.3937 (3)0.0454 (8)
C81.0937 (3)0.3383 (2)0.5057 (3)0.0551 (9)
H81.08760.34930.57480.066*
C91.1837 (3)0.2891 (3)0.5130 (4)0.0632 (11)
H91.23830.26670.58640.076*
C101.1924 (3)0.2731 (2)0.4092 (4)0.0612 (10)
H101.25290.23920.41410.073*
C111.1146 (3)0.3058 (2)0.3007 (4)0.0547 (9)
H111.12350.29470.23320.066*
C121.0196 (3)0.3567 (2)0.2898 (3)0.0448 (8)
C130.6053 (3)0.5821 (2)0.0183 (3)0.0414 (7)
H130.54270.60950.01910.050*
C140.6146 (3)0.5897 (2)−0.0883 (3)0.0424 (7)
C150.5322 (3)0.6421 (2)−0.1808 (3)0.0524 (9)
H150.47180.6658−0.17160.063*
C160.5389 (3)0.6588 (3)−0.2836 (3)0.0594 (10)
H160.48380.6936−0.34340.071*
C170.6287 (3)0.6233 (3)−0.2976 (4)0.0604 (10)
H170.63440.6355−0.36670.072*
C180.7094 (3)0.5704 (2)−0.2111 (3)0.0539 (9)
H180.76870.5475−0.22290.065*
C190.7045 (3)0.5504 (2)−0.1065 (3)0.0439 (7)
C200.9823 (3)0.5955 (2)0.1477 (3)0.0512 (8)
H200.94740.58900.06470.061*
C211.1401 (4)0.6472 (3)0.3283 (4)0.0786 (13)
H21A1.11110.69780.34980.118*
H21B1.22120.65410.35530.118*
H21C1.12770.59670.36540.118*
C221.1359 (3)0.6718 (3)0.1329 (4)0.0615 (10)
H22A1.08400.66760.04840.092*
H22B1.20470.63940.15190.092*
H22C1.15530.73180.15420.092*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0323 (2)0.0442 (3)0.0446 (3)0.00752 (19)0.0144 (2)0.0030 (2)
Br10.0530 (2)0.0760 (3)0.0671 (3)0.01648 (18)0.0340 (2)0.00264 (19)
Cl10.0388 (4)0.0490 (5)0.0738 (6)0.0018 (4)0.0156 (4)−0.0049 (4)
O10.0363 (12)0.0610 (15)0.0522 (14)0.0125 (10)0.0177 (11)0.0032 (11)
O20.0456 (13)0.0555 (14)0.0484 (13)0.0124 (11)0.0205 (11)0.0053 (11)
O30.0466 (13)0.0568 (15)0.0615 (15)−0.0083 (11)0.0242 (12)−0.0003 (12)
N10.0337 (13)0.0393 (14)0.0467 (15)0.0040 (11)0.0158 (12)0.0030 (11)
N20.0331 (13)0.0386 (14)0.0421 (14)0.0028 (11)0.0124 (11)0.0006 (11)
N30.0424 (15)0.0472 (16)0.0608 (19)0.0015 (12)0.0252 (14)0.0027 (13)
N40.0489 (16)0.0571 (17)0.0465 (16)0.0089 (14)0.0244 (14)0.0070 (13)
C10.0333 (16)0.0375 (16)0.0491 (18)0.0010 (13)0.0169 (14)−0.0013 (13)
C20.0326 (15)0.0386 (16)0.0434 (17)−0.0005 (12)0.0151 (13)−0.0031 (13)
C30.0350 (16)0.0421 (17)0.0494 (19)0.0038 (13)0.0131 (14)0.0007 (14)
C40.0375 (17)0.0488 (19)0.057 (2)0.0019 (14)0.0239 (16)−0.0022 (16)
C50.053 (2)0.055 (2)0.051 (2)0.0086 (17)0.0283 (17)0.0060 (16)
C60.0380 (17)0.0472 (18)0.0455 (19)0.0030 (14)0.0157 (15)0.0015 (14)
C70.0305 (16)0.0424 (18)0.054 (2)0.0017 (13)0.0119 (14)0.0072 (14)
C80.0396 (18)0.056 (2)0.055 (2)0.0002 (16)0.0102 (16)0.0072 (17)
C90.0354 (18)0.057 (2)0.074 (3)0.0052 (16)0.0073 (18)0.019 (2)
C100.0312 (17)0.051 (2)0.090 (3)0.0099 (15)0.0195 (19)0.0130 (19)
C110.0398 (18)0.0478 (19)0.076 (3)0.0064 (15)0.0266 (18)0.0050 (17)
C120.0274 (15)0.0389 (16)0.060 (2)0.0006 (12)0.0140 (15)0.0058 (14)
C130.0313 (15)0.0369 (16)0.0504 (19)0.0021 (13)0.0145 (14)0.0007 (14)
C140.0333 (15)0.0376 (16)0.0442 (18)−0.0038 (13)0.0084 (14)0.0019 (13)
C150.0421 (19)0.053 (2)0.052 (2)0.0020 (15)0.0136 (16)0.0062 (16)
C160.054 (2)0.059 (2)0.051 (2)0.0041 (18)0.0129 (18)0.0119 (17)
C170.061 (2)0.068 (2)0.046 (2)−0.0066 (19)0.0198 (18)0.0068 (17)
C180.052 (2)0.059 (2)0.052 (2)−0.0045 (17)0.0257 (18)−0.0023 (17)
C190.0378 (17)0.0435 (18)0.0429 (18)−0.0063 (13)0.0128 (14)−0.0031 (14)
C200.0449 (19)0.051 (2)0.053 (2)−0.0002 (16)0.0191 (17)−0.0008 (16)
C210.061 (3)0.101 (3)0.064 (3)−0.027 (2)0.022 (2)−0.004 (2)
C220.056 (2)0.062 (2)0.080 (3)0.0015 (18)0.043 (2)0.008 (2)

Geometric parameters (Å, °)

Fe1—O21.900 (2)C7—C81.424 (5)
Fe1—O11.917 (2)C8—C91.371 (5)
Fe1—N12.110 (3)C8—H80.9300
Fe1—N22.152 (3)C9—C101.391 (6)
Fe1—O32.164 (2)C9—H90.9300
Fe1—Cl12.3566 (10)C10—C111.361 (5)
Br1—C41.899 (3)C10—H100.9300
O1—C121.317 (4)C11—C121.425 (5)
O2—C191.312 (4)C11—H110.9300
O3—C201.238 (4)C13—C141.414 (5)
N1—C61.307 (4)C13—H130.9300
N1—C11.416 (4)C14—C151.412 (5)
N2—C131.304 (4)C14—C191.441 (5)
N2—C21.409 (4)C15—C161.367 (5)
N3—C201.306 (4)C15—H150.9300
N3—C211.441 (5)C16—C171.388 (6)
N3—C221.454 (5)C16—H160.9300
N4—C11.332 (4)C17—C181.373 (5)
N4—C51.334 (4)C17—H170.9300
C1—C21.403 (4)C18—C191.388 (5)
C2—C31.399 (4)C18—H180.9300
C3—C41.370 (5)C20—H200.9300
C3—H30.9300C21—H21A0.9600
C4—C51.378 (5)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.426 (5)C22—H22A0.9600
C6—H60.9300C22—H22B0.9600
C7—C121.404 (5)C22—H22C0.9600
O2—Fe1—O1105.85 (10)C9—C8—H8119.5
O2—Fe1—N1162.06 (10)C7—C8—H8119.5
O1—Fe1—N188.45 (10)C8—C9—C10119.1 (3)
O2—Fe1—N288.45 (10)C8—C9—H9120.5
O1—Fe1—N2164.57 (11)C10—C9—H9120.5
N1—Fe1—N276.44 (10)C11—C10—C9121.9 (3)
O2—Fe1—O386.61 (10)C11—C10—H10119.1
O1—Fe1—O385.54 (10)C9—C10—H10119.1
N1—Fe1—O383.71 (10)C10—C11—C12120.5 (4)
N2—Fe1—O389.66 (10)C10—C11—H11119.7
O2—Fe1—Cl195.47 (8)C12—C11—H11119.7
O1—Fe1—Cl194.43 (8)O1—C12—C7124.0 (3)
N1—Fe1—Cl194.13 (8)O1—C12—C11117.8 (3)
N2—Fe1—Cl189.83 (7)C7—C12—C11118.2 (3)
O3—Fe1—Cl1177.85 (8)N2—C13—C14126.8 (3)
C12—O1—Fe1132.1 (2)N2—C13—H13116.6
C19—O2—Fe1134.1 (2)C14—C13—H13116.6
C20—O3—Fe1121.9 (2)C15—C14—C13117.3 (3)
C6—N1—C1118.7 (3)C15—C14—C19118.3 (3)
C6—N1—Fe1125.2 (2)C13—C14—C19124.4 (3)
C1—N1—Fe1116.0 (2)C16—C15—C14121.7 (4)
C13—N2—C2121.4 (3)C16—C15—H15119.2
C13—N2—Fe1123.3 (2)C14—C15—H15119.2
C2—N2—Fe1114.89 (19)C15—C16—C17119.3 (4)
C20—N3—C21120.2 (3)C15—C16—H16120.4
C20—N3—C22122.4 (3)C17—C16—H16120.4
C21—N3—C22117.3 (3)C18—C17—C16121.1 (4)
C1—N4—C5117.8 (3)C18—C17—H17119.5
N4—C1—C2124.0 (3)C16—C17—H17119.5
N4—C1—N1120.2 (3)C17—C18—C19121.5 (4)
C2—C1—N1115.8 (3)C17—C18—H18119.2
C3—C2—C1117.2 (3)C19—C18—H18119.2
C3—C2—N2126.8 (3)O2—C19—C18119.8 (3)
C1—C2—N2116.0 (3)O2—C19—C14122.1 (3)
C4—C3—C2117.8 (3)C18—C19—C14118.1 (3)
C4—C3—H3121.1O3—C20—N3124.8 (4)
C2—C3—H3121.1O3—C20—H20117.6
C3—C4—C5121.3 (3)N3—C20—H20117.6
C3—C4—Br1120.0 (3)N3—C21—H21A109.5
C5—C4—Br1118.7 (3)N3—C21—H21B109.5
N4—C5—C4121.8 (3)H21A—C21—H21B109.5
N4—C5—H5119.1N3—C21—H21C109.5
C4—C5—H5119.1H21A—C21—H21C109.5
N1—C6—C7125.2 (3)H21B—C21—H21C109.5
N1—C6—H6117.4N3—C22—H22A109.5
C7—C6—H6117.4N3—C22—H22B109.5
C12—C7—C8119.4 (3)H22A—C22—H22B109.5
C12—C7—C6124.3 (3)N3—C22—H22C109.5
C8—C7—C6116.2 (3)H22A—C22—H22C109.5
C9—C8—C7120.9 (4)H22B—C22—H22C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2520).

References

  • Alam, M. A., Nethaji, M. & Ray, M. (2003). Angew. Chem. Int. Ed.42, 1940–1942. [PubMed]
  • Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc.127, 4568–4569. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zelewsky, A. & von Knof, U. (1999). Angew. Chem. Int. Ed.38, 302–322.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography