PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1188.
Published online 2009 September 9. doi:  10.1107/S1600536809033042
PMCID: PMC2970193

Diaqua­dichlorido[5-(3-pyridinio)tetra­zolato-κN 2]copper(II) dihydrate

Abstract

The title compound, [CuCl2(C6H5N5)2(H2O)2]·2H2O, was synthesized by hydro­thermal reaction of CuCl2 with 3-(2H-tetra­zol-5-yl)pyridine. The CuII cation, located on an inversion center, is coordinated by two Cl ions, two N atoms from two 5-(3-pyridinio)tetra­zolate zwitterions and two O atoms from two water mol­ecules in a distorted octa­hedral geometry. In the crystal, mol­ecules are linked into a two-dimensional sheet parallel to (001) by N—H(...)N, O—H(...)N, O—H(...)O and O—H(...)Cl hydrogen bonds involving the pyridinium N atom, the Cl atoms and the coordinated and free water mol­ecules. The latter are disordered over two positions in a 0.54:0.46 ratio.

Related literature

For general background to metal-organic coordination compounds, see: Chen et al. (2000 [triangle], 2001 [triangle]); Fu & Xiong (2008 [triangle]); Fu et al. (2007 [triangle]); Liu et al. (1999 [triangle]); Xie et al. (2002 [triangle], 2003 [triangle]); Zhang et al. (2001 [triangle]); Zhao et al. (2004 [triangle]). For related structures, see: Wang et al. (2005 [triangle]); Fu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1188-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C6H5N5)2(H2O)2]·2H2O
  • M r = 500.80
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1188-efi1.jpg
  • a = 6.5484 (13) Å
  • b = 8.3348 (17) Å
  • c = 9.1215 (18) Å
  • α = 99.54 (3)°
  • β = 110.22 (3)°
  • γ = 91.73 (3)°
  • V = 458.64 (19) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.53 mm−1
  • T = 298 K
  • 0.15 × 0.10 × 0.10 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.85, T max = 1.00 (expected range = 0.729–0.858)
  • 4880 measured reflections
  • 2103 independent reflections
  • 1953 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.114
  • S = 1.31
  • 2103 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033042/dn2471sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033042/dn2471Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

The construction of metal-organic coordination compounds has attracted much attention owing to the potential functions, such as permittivity, fluorescence, magnetism and optical properties. (Chen et al., 2000; Chen et al., 2001; Fu et al., 2007; Fu & Xiong 2008; Liu et al., 1999; Xie et al., 2003; Xie et al., 2002; Zhang et al., 2001; Zhao et al., 2004) Tetrazole compounds are a class of excellent ligands for the construction of novel metal-organic frameworks, because of its various coordination modes. (Wang, et al. 2005; Fu et al., 2008). We report here the crystal structure of the title compound, Diaqua-dichlorido[pyridinio-3-(2H-tetrazolato)-κN] copper(II) dihydrate.

The CuII cation, located on an inversion center, is coordinated by two Cl- ions, two N atoms from two pyridinio-4-(2H-tetrazolate) zwitterions and two O atoms from two water molecules in a distorted octahedral geometry. The pyridine N atom of the organic ligand is protonated. The pyridinium and tetrazolate rings are essentially coplanar, with a dihedral angle of 0.76 (1)°. The geometric parameters of the tetrazolate ring are comparable to those in related molecules (Wang, et al. 2005; Fu et al., 2008).

The molecules are linked into a two-dimensional sheet parallel to the (0 0 1) plane by intermolecular N—H···N, O-H···N, O-H···O and O-H···Cl hydrogen bonds involving the pydine nitrogen and the coordinated and free water molecules. (Table 1 and Fig.2).

Experimental

A mixture of 3-(2H-tetrazol-5-yl)pyridine (0.2 mmol), CuCl2 (0.4 mmol), distilled water (1 ml) and a few drops of HCl (6 mol/L) was sealed in a glass tube and maintained at 323 K. Blue block-shaped crystals suitable for X-ray analysis were obtained after 3 d.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, these H atoms were treated as riding on their parent O atom.

The free water molecule was found to be roughly staistically disoredered over two positions. H atoms for this disordered molecules were treated as above.

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Free water molecules have been omitted for clarity. ...
Fig. 2.
The crystal packing of the title compound, viewed along the c axis, showing the two dimensionnal hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.

Crystal data

[CuCl2(C6H5N5)2(H2O)2]·2H2OZ = 1
Mr = 500.80F(000) = 255
Triclinic, P1Dx = 1.813 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5484 (13) ÅCell parameters from 1953 reflections
b = 8.3348 (17) Åθ = 3.1–27.5°
c = 9.1215 (18) ŵ = 1.53 mm1
α = 99.54 (3)°T = 298 K
β = 110.22 (3)°Block, blue
γ = 91.73 (3)°0.15 × 0.10 × 0.10 mm
V = 458.64 (19) Å3

Data collection

Rigaku Mercury2 diffractometer2103 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
graphiteRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −10→10
Tmin = 0.85, Tmax = 1.00l = −11→11
4880 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.31w = 1/[σ2(Fo2) + 1.0933P] where P = (Fo2 + 2Fc2)/3
2103 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.02259 (18)
N10.2750 (6)−0.3207 (4)0.0634 (4)0.0311 (7)
H10.3009−0.39480.12110.037*
N20.3845 (5)0.1765 (3)0.2805 (4)0.0228 (6)
N30.3946 (5)0.3381 (3)0.2979 (3)0.0226 (6)
N40.3283 (5)0.3805 (4)0.1585 (4)0.0259 (7)
N50.2733 (6)0.2488 (4)0.0467 (4)0.0268 (7)
C10.3091 (7)−0.1653 (5)0.1350 (5)0.0294 (8)
H1A0.3598−0.13850.24540.035*
C20.2700 (6)−0.0447 (4)0.0473 (4)0.0204 (7)
C30.1941 (6)−0.0902 (4)−0.1163 (4)0.0253 (8)
H30.1656−0.0105−0.17920.030*
C40.1608 (7)−0.2512 (5)−0.1860 (5)0.0299 (8)
H40.1095−0.2821−0.29620.036*
C50.2037 (7)−0.3666 (5)−0.0919 (5)0.0325 (9)
H50.1825−0.4770−0.13750.039*
C60.3097 (6)0.1261 (4)0.1255 (4)0.0203 (7)
O1W0.3115 (5)0.3482 (4)0.6228 (4)0.0451 (8)
H11W0.32770.24890.63160.068*
H12W0.17790.36570.59740.068*
Cl10.19420 (15)0.63743 (11)0.40795 (11)0.0307 (2)
O2WA0.2969 (13)0.0279 (8)0.5219 (8)0.0506 (16)0.54
H1WA0.33600.06070.45130.076*0.54
H2WA0.16180.03870.50260.076*0.54
O2WB0.1538 (17)0.0200 (10)0.5354 (13)0.068 (3)0.46
H1WB0.2070−0.06990.51680.102*0.46
H2WB0.02790.00020.53940.102*0.46

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0278 (3)0.0148 (3)0.0195 (3)0.0024 (2)0.0043 (2)−0.0033 (2)
N10.044 (2)0.0169 (15)0.0295 (17)0.0012 (13)0.0103 (15)0.0029 (13)
N20.0311 (16)0.0122 (13)0.0221 (15)0.0027 (11)0.0069 (13)0.0005 (11)
N30.0298 (16)0.0125 (13)0.0230 (15)0.0038 (11)0.0074 (13)0.0001 (11)
N40.0378 (18)0.0158 (14)0.0215 (15)0.0019 (12)0.0086 (13)0.0007 (11)
N50.0393 (18)0.0169 (14)0.0205 (15)−0.0004 (13)0.0079 (13)0.0002 (12)
C10.042 (2)0.0195 (18)0.0226 (18)−0.0009 (15)0.0086 (16)0.0004 (14)
C20.0228 (16)0.0159 (16)0.0210 (17)0.0006 (12)0.0082 (14)−0.0017 (13)
C30.0301 (19)0.0221 (18)0.0217 (18)0.0010 (14)0.0078 (15)0.0017 (14)
C40.034 (2)0.027 (2)0.0216 (18)−0.0013 (16)0.0075 (16)−0.0072 (15)
C50.038 (2)0.0192 (19)0.035 (2)−0.0013 (16)0.0115 (18)−0.0071 (16)
C60.0215 (16)0.0168 (16)0.0204 (17)−0.0006 (12)0.0064 (13)0.0005 (13)
O1W0.0381 (17)0.0354 (17)0.061 (2)−0.0007 (13)0.0175 (16)0.0064 (15)
Cl10.0299 (5)0.0288 (5)0.0287 (5)0.0066 (4)0.0074 (4)−0.0013 (4)
O2WA0.069 (5)0.034 (3)0.051 (4)0.008 (3)0.023 (4)0.007 (3)
O2WB0.079 (7)0.028 (4)0.109 (8)−0.001 (4)0.051 (6)0.009 (4)

Geometric parameters (Å, °)

Cu1—N3i1.984 (3)C2—C31.380 (5)
Cu1—N31.984 (3)C2—C61.455 (5)
Cu1—Cl12.3070 (12)C3—C41.362 (5)
Cu1—Cl1i2.3070 (12)C3—H30.9300
Cu1—O1W2.390 (3)C4—C51.365 (6)
Cu1—O1Wi2.390 (3)C4—H40.9300
N1—C51.312 (5)C5—H50.9300
N1—C11.325 (5)O1W—H11W0.8509
N1—H10.8600O1W—H12W0.8482
N2—C61.314 (4)O2WA—H1WA0.8502
N2—N31.326 (4)O2WA—H2WA0.8506
N3—N41.306 (4)O2WA—H1WB0.9761
N4—N51.313 (4)O2WB—H2WA0.3777
N5—C61.327 (5)O2WB—H1WB0.8518
C1—C21.362 (5)O2WB—H2WB0.8501
C1—H1A0.9300
N3i—Cu1—N3180.000 (1)C2—C1—H1A119.9
N3i—Cu1—Cl190.15 (9)C1—C2—C3117.9 (3)
N3—Cu1—Cl189.85 (9)C1—C2—C6120.4 (3)
N3i—Cu1—Cl1i89.85 (9)C3—C2—C6121.7 (3)
N3—Cu1—Cl1i90.15 (9)C4—C3—C2120.3 (4)
Cl1—Cu1—Cl1i180.000 (1)C4—C3—H3119.8
N3i—Cu1—O1W87.13 (12)C2—C3—H3119.8
N3—Cu1—O1W92.87 (12)C3—C4—C5119.1 (4)
Cl1—Cu1—O1W89.21 (9)C3—C4—H4120.4
Cl1i—Cu1—O1W90.79 (9)C5—C4—H4120.4
N3i—Cu1—O1Wi92.87 (12)N1—C5—C4119.6 (3)
N3—Cu1—O1Wi87.13 (12)N1—C5—H5120.2
Cl1—Cu1—O1Wi90.79 (9)C4—C5—H5120.2
Cl1i—Cu1—O1Wi89.21 (9)N2—C6—N5112.5 (3)
O1W—Cu1—O1Wi180.0N2—C6—C2124.4 (3)
C5—N1—C1122.9 (3)N5—C6—C2123.2 (3)
C5—N1—H1118.6Cu1—O1W—H11W124.2
C1—N1—H1118.6Cu1—O1W—H12W112.4
C6—N2—N3103.8 (3)H11W—O1W—H12W110.7
N4—N3—N2109.9 (3)H1WA—O2WA—H2WA109.9
N4—N3—Cu1122.7 (2)H1WA—O2WA—H1WB131.0
N2—N3—Cu1127.4 (2)H2WA—O2WA—H1WB64.2
N3—N4—N5109.5 (3)H2WA—O2WB—H1WB97.6
N4—N5—C6104.4 (3)H2WA—O2WB—H2WB122.2
N1—C1—C2120.2 (4)H1WB—O2WB—H2WB109.3
N1—C1—H1A119.9

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N4ii0.861.962.763 (4)155
O1W—H11W···O2WA0.851.912.663 (7)146
O1W—H11W···O2WB0.852.082.779 (9)139
O1W—H12W···Cl1iii0.852.423.233 (3)161
O2WA—H1WA···N20.852.072.906 (8)168
O2WB—H1WB···Cl1ii0.852.463.259 (9)156
O2WB—H2WB···O2WBiv0.851.141.89 (2)143

Symmetry codes: (ii) x, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2471).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun.4, 346–349.
  • Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc.129, 5346–5347. [PubMed]
  • Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. [PubMed]
  • Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
  • Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun.2, 31–34.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [PubMed]
  • Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2002). Inorg. Chem.41, 3323–3326. [PubMed]
  • Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem.20, 3712–3715.
  • Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.
  • Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem.630, 1367–1370.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography