PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2481.
Published online 2009 September 16. doi:  10.1107/S1600536809036769
PMCID: PMC2970189

2-(3-Bromo-4-ethyl­phen­yl)-2-methyl­propanoic acid

Abstract

In the title compound, C12H15BrO2, the carboxyl group forms a dihedral angle of 78.4 (3)° with the benzene ring plane. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of O—H(...)O hydrogen bonds.

Related literature

For the preparation of pharmaceuticals and active agrochemical ingredients using 2-(3-bromo-4-ethyl­phen­yl)-2-methyl­propanoic acid, see: Wiegand et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2481-scheme1.jpg

Experimental

Crystal data

  • C12H15BrO2
  • M r = 271.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2481-efi1.jpg
  • a = 9.7370 (19) Å
  • b = 7.2930 (15) Å
  • c = 17.433 (4) Å
  • β = 90.98 (3)°
  • V = 1237.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.30 mm−1
  • T = 298 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.558, T max = 0.734
  • 2389 measured reflections
  • 2246 independent reflections
  • 1171 reflections with I > 2σ(I)
  • R int = 0.051
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.157
  • S = 1.00
  • 2246 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, ls. DOI: 10.1107/S1600536809036769/ci2903sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036769/ci2903Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

2-(3-Bromo-4-ethylphenyl)-2-methylpropanoic acid is one of the valuable intermediates for the preparation of pharmaceuticals and active agrochemical ingredients (Wiegand et al., 2007). We report here the crystal structure of the title compound.

Bond lengths (Allen et al., 1987) and angles in the title molecule (Fig.1) are within normal ranges. The plane of the carboxyl group forms a dihedral angle of 78.4 (3)° with the benzene plane.

In the crystal, molecules are linked into centrosymmetric dimers by pairs of O—H···O hydrogen bonds (Fig. 2).

Experimental

The title compound was prepared by the hydrolyzation of methyl 2-(3-bromo-4-ethylphenyl)-2-methylpropanoate (10.42 g, 0.037 mol) in a solution of methanol (30 ml) and acetone (150 ml), catalyzed by KOH aqueous solution (73 ml, 1.0 mol/l) at room temperature (298 k). After stirring for 8 h, methanol and acetone were removed by reduced distillation to obtain an aqueous substrate. The substrate was washed with dichloromethane (4× 20 ml), and precipitated with concentrated hydrochloric acid. Then the precipitate was washed with water, collected and dried to give 2-(3-bromo-4-ethylphenyl)-2-methylpropanoic acid (4.07 g, 0.015 mol) with a yield of 41.0%. Single crystals of the compound were obtained by slow evaporation of an methanol solution at room temperature.

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C12H15BrO2F(000) = 552
Mr = 271.15Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.7370 (19) Åθ = 10–13°
b = 7.2930 (15) ŵ = 3.30 mm1
c = 17.433 (4) ÅT = 298 K
β = 90.98 (3)°Block, colourless
V = 1237.8 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
graphiteθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 0→11
Absorption correction: ψ scan (North et al., 1968)k = 0→8
Tmin = 0.558, Tmax = 0.734l = −20→20
2389 measured reflections3 standard reflections every 200 reflections
2246 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.073P)2] where P = (Fo2 + 2Fc2)/3
2246 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.59774 (8)0.20831 (13)0.22133 (4)0.0837 (4)
O10.1885 (4)0.0103 (6)0.0039 (3)0.0702 (14)
H1D0.1216−0.05610.00990.105*
C10.5163 (8)0.6662 (12)0.2979 (4)0.095 (3)
H1A0.53490.69860.35040.142*
H1B0.48450.77230.27030.142*
H1C0.59880.62120.27510.142*
O20.0282 (4)0.2132 (6)−0.0248 (3)0.0621 (12)
C20.4083 (6)0.5204 (10)0.2946 (3)0.0651 (19)
H2A0.32590.56560.31860.078*
H2B0.44020.41450.32340.078*
C30.3738 (6)0.4625 (9)0.2136 (3)0.0456 (15)
C40.4468 (5)0.3321 (9)0.1736 (3)0.0453 (15)
C50.4157 (5)0.2833 (8)0.0980 (3)0.0420 (14)
H5A0.46880.19600.07330.050*
C60.3068 (5)0.3641 (8)0.0596 (3)0.0376 (14)
C70.2310 (6)0.4946 (9)0.0993 (3)0.0551 (17)
H7A0.15690.55210.07510.066*
C80.2650 (6)0.5387 (9)0.1738 (4)0.0585 (18)
H8A0.21150.62510.19870.070*
C90.2652 (6)0.3128 (8)−0.0232 (3)0.0458 (15)
C100.3853 (7)0.2252 (10)−0.0659 (4)0.069 (2)
H10A0.35620.1951−0.11730.103*
H10B0.41410.1157−0.03970.103*
H10C0.46050.3102−0.06750.103*
C110.2130 (7)0.4781 (9)−0.0680 (4)0.067 (2)
H11A0.13680.5316−0.04190.100*
H11B0.18400.4401−0.11850.100*
H11C0.28530.5669−0.07200.100*
C120.1475 (6)0.1738 (8)−0.0153 (3)0.0456 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0699 (5)0.1100 (7)0.0703 (5)0.0306 (5)−0.0219 (4)0.0089 (5)
O10.055 (3)0.041 (3)0.113 (4)−0.007 (2)−0.016 (3)0.011 (3)
C10.103 (6)0.102 (7)0.078 (5)−0.038 (6)−0.012 (5)−0.032 (5)
O20.046 (3)0.046 (3)0.094 (3)−0.001 (2)−0.016 (2)0.007 (2)
C20.063 (4)0.082 (5)0.050 (4)−0.007 (4)0.000 (3)−0.003 (4)
C30.042 (3)0.053 (4)0.041 (3)−0.003 (3)−0.002 (3)−0.005 (3)
C40.035 (3)0.054 (4)0.047 (3)−0.007 (3)−0.002 (3)0.010 (3)
C50.041 (3)0.040 (3)0.045 (3)0.004 (3)0.002 (3)0.000 (3)
C60.038 (3)0.036 (3)0.039 (3)−0.005 (3)0.001 (3)0.001 (3)
C70.046 (4)0.065 (5)0.054 (4)0.011 (3)−0.013 (3)−0.006 (4)
C80.059 (4)0.054 (5)0.062 (4)0.009 (3)−0.003 (3)−0.019 (3)
C90.048 (3)0.048 (4)0.041 (3)0.000 (3)−0.005 (3)−0.001 (3)
C100.067 (4)0.090 (6)0.049 (4)0.000 (4)0.008 (3)−0.009 (4)
C110.089 (5)0.064 (5)0.047 (4)−0.014 (4)−0.017 (4)0.013 (4)
C120.057 (4)0.034 (4)0.045 (3)0.001 (3)−0.011 (3)−0.001 (3)

Geometric parameters (Å, °)

Br—C41.904 (6)C5—H5A0.93
O1—C121.299 (7)C6—C71.395 (8)
O1—H1D0.82C6—C91.539 (7)
C1—C21.496 (9)C7—C81.373 (8)
C1—H1A0.96C7—H7A0.93
C1—H1B0.96C8—H8A0.93
C1—H1C0.96C9—C111.520 (8)
O2—C121.205 (7)C9—C101.536 (9)
C2—C31.505 (8)C9—C121.538 (8)
C2—H2A0.97C10—H10A0.96
C2—H2B0.97C10—H10B0.96
C3—C81.374 (8)C10—H10C0.96
C3—C41.383 (8)C11—H11A0.96
C4—C51.394 (8)C11—H11B0.96
C5—C61.376 (7)C11—H11C0.96
C12—O1—H1D109.5C8—C7—H7A119.7
C2—C1—H1A109.5C6—C7—H7A119.7
C2—C1—H1B109.5C7—C8—C3123.7 (6)
H1A—C1—H1B109.5C7—C8—H8A118.2
C2—C1—H1C109.5C3—C8—H8A118.2
H1A—C1—H1C109.5C11—C9—C10109.3 (5)
H1B—C1—H1C109.5C11—C9—C12109.0 (5)
C1—C2—C3112.4 (6)C10—C9—C12110.1 (5)
C1—C2—H2A109.1C11—C9—C6111.7 (5)
C3—C2—H2A109.1C10—C9—C6111.5 (5)
C1—C2—H2B109.1C12—C9—C6105.1 (4)
C3—C2—H2B109.1C9—C10—H10A109.5
H2A—C2—H2B107.8C9—C10—H10B109.5
C8—C3—C4115.0 (5)H10A—C10—H10B109.5
C8—C3—C2121.2 (6)C9—C10—H10C109.5
C4—C3—C2123.8 (5)H10A—C10—H10C109.5
C3—C4—C5123.2 (5)H10B—C10—H10C109.5
C3—C4—Br120.3 (4)C9—C11—H11A109.5
C5—C4—Br116.5 (5)C9—C11—H11B109.5
C6—C5—C4120.2 (5)H11A—C11—H11B109.5
C6—C5—H5A119.9C9—C11—H11C109.5
C4—C5—H5A119.9H11A—C11—H11C109.5
C5—C6—C7117.5 (5)H11B—C11—H11C109.5
C5—C6—C9122.6 (5)O2—C12—O1123.0 (6)
C7—C6—C9119.9 (5)O2—C12—C9123.3 (5)
C8—C7—C6120.5 (6)O1—C12—C9113.7 (5)
C1—C2—C3—C8−95.0 (8)C2—C3—C8—C7178.3 (6)
C1—C2—C3—C484.7 (8)C5—C6—C9—C11−144.6 (6)
C8—C3—C4—C51.5 (9)C7—C6—C9—C1136.7 (7)
C2—C3—C4—C5−178.3 (6)C5—C6—C9—C10−22.0 (8)
C8—C3—C4—Br−178.4 (4)C7—C6—C9—C10159.4 (6)
C2—C3—C4—Br1.9 (8)C5—C6—C9—C1297.3 (6)
C3—C4—C5—C6−0.9 (9)C7—C6—C9—C12−81.4 (6)
Br—C4—C5—C6178.9 (4)C11—C9—C12—O2−18.2 (8)
C4—C5—C6—C70.2 (8)C10—C9—C12—O2−138.1 (6)
C4—C5—C6—C9−178.5 (5)C6—C9—C12—O2101.7 (6)
C5—C6—C7—C8−0.2 (9)C11—C9—C12—O1163.1 (5)
C9—C6—C7—C8178.5 (6)C10—C9—C12—O143.2 (7)
C6—C7—C8—C30.9 (11)C6—C9—C12—O1−77.0 (6)
C4—C3—C8—C7−1.5 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1D···O2i0.821.882.696 (6)178

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2903).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wiegand, J. M. C., Schafer, C., Palaoro, M., Skranc, W. & Maurer, O. (2007). WO Patent No. 2007096034.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography