PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2575.
Published online 2009 September 30. doi:  10.1107/S160053680903699X
PMCID: PMC2970177

2-Eth­oxy-4-{[(2-nitro­phen­yl)hydrazono]meth­yl}phenol

Abstract

The title compound, C15H15N3O4, a Schiff base, was obtained from a condensation reaction of 3-eth­oxy-4-hydroxy­benzaldehyde and 2-nitro­phenyl­hydrazine. The mol­ecule is approximately planar, the largest deviation from the mean plane being 0.1449 (16) Å. An intramolecular N—H(...)O inter­action is also present. In the crystal, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules, forming chain parallel to the b axis.

Related literature

For the role played by Schiff bases in the development of various proteins and enzymes, see: Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2575-scheme1.jpg

Experimental

Crystal data

  • C15H15N3O4
  • M r = 301.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2575-efi3.jpg
  • a = 14.586 (3) Å
  • b = 5.002 (1) Å
  • c = 19.894 (4) Å
  • β = 102.40 (3)°
  • V = 1417.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.979, T max = 0.982
  • 5585 measured reflections
  • 2762 independent reflections
  • 1264 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.071
  • S = 0.72
  • 2762 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903699X/dn2485sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903699X/dn2485Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to express their deep appreciation to the startup fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry (No. 2005001) and the Fund for Natural Scientific Research of Zhengzhou University of Light Industry (000455).

supplementary crystallographic information

Comment

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.

The whole molecule is roughly planar with the largest deviation from the mean plane being -0.1449 (16)Å at C15 (Fig. 1).

Intermolecular O—H···O hydrogen bonds link the molecule to form chain parallel to the b axis (Table 1, Fig. 2).

Experimental

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minitutes at 351k, 3-Ethoxy-4-hydroxybenzaldehyde (1 mmol, 0.166 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, red single crystals of (I) was obtained after 3 d.

Refinement

All H atoms were positioned geometrically and refined as riding with C—H=0.93 (aromatic), 0.97(methylene), 0.96 Å(methyl) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(CH, CH2 or NH) and Uiso(H)=1.5Ueq(C).

Figures

Fig. 1.
Molecular view of of (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view of (I) showing the formation of a chain through O-H···O hydrogen bonds. H atoms are represented as small spheres of arbitrary radii and H bonds are shown as dashed line. H atoms not involved in hydrogen bonding ...

Crystal data

C15H15N3O4F(000) = 632
Mr = 301.30Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1993 reflections
a = 14.586 (3) Åθ = 3.1–28.2°
b = 5.002 (1) ŵ = 0.11 mm1
c = 19.894 (4) ÅT = 296 K
β = 102.40 (3)°Block, red
V = 1417.6 (5) Å30.20 × 0.18 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2762 independent reflections
Radiation source: fine-focus sealed tube1264 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −17→16
Tmin = 0.979, Tmax = 0.982k = −6→5
5585 measured reflectionsl = −17→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.72w = 1/[σ2(Fo2) + (0.0305P)2] where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.06946 (14)0.4950 (3)0.12464 (9)0.0311 (5)
C20.07330 (15)0.6553 (4)0.18267 (10)0.0385 (5)
H2A0.03010.62900.21030.046*
C30.13985 (16)0.8501 (4)0.19918 (10)0.0435 (6)
H30.14280.95620.23800.052*
C40.20308 (15)0.8864 (4)0.15677 (10)0.0431 (6)
H40.24831.01970.16740.052*
C50.20040 (15)0.7316 (4)0.10010 (10)0.0404 (6)
H50.24390.76200.07290.049*
C60.13368 (14)0.5272 (3)0.08161 (10)0.0309 (5)
C70.19806 (14)0.2628 (4)−0.06428 (9)0.0350 (5)
H70.15100.1341−0.07370.042*
C80.26434 (14)0.2814 (3)−0.10903 (9)0.0320 (5)
C90.33800 (14)0.4669 (3)−0.09704 (9)0.0320 (5)
H90.34550.5822−0.05960.038*
C100.39910 (14)0.4781 (3)−0.14074 (10)0.0315 (5)
C110.38746 (14)0.3060 (4)−0.19732 (9)0.0310 (5)
C120.31578 (15)0.1243 (4)−0.20896 (10)0.0369 (5)
H120.30820.0102−0.24670.044*
C130.25466 (15)0.1098 (4)−0.16481 (10)0.0375 (5)
H130.2066−0.0161−0.17260.045*
C140.49775 (15)0.8147 (4)−0.07617 (10)0.0397 (5)
H14A0.50670.7107−0.03410.048*
H14B0.44760.9422−0.07640.048*
C150.58674 (16)0.9580 (4)−0.08049 (11)0.0557 (7)
H15A0.63580.8298−0.08020.084*
H15B0.60441.0757−0.04170.084*
H15C0.57691.0602−0.12230.084*
N1−0.00228 (12)0.2929 (3)0.11143 (9)0.0380 (4)
N20.13414 (11)0.3742 (3)0.02520 (8)0.0365 (4)
H20.09240.25190.01310.044*
N30.20184 (11)0.4161 (3)−0.01266 (8)0.0345 (4)
O1−0.00973 (10)0.1463 (3)0.06016 (7)0.0466 (4)
O2−0.05468 (11)0.2664 (3)0.15192 (7)0.0572 (5)
O30.47481 (10)0.6437 (2)−0.13471 (7)0.0433 (4)
O40.44797 (11)0.3159 (2)−0.24127 (7)0.0462 (4)
H110.47890.4540−0.23460.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0301 (13)0.0326 (11)0.0327 (12)−0.0013 (10)0.0117 (10)0.0023 (9)
C20.0433 (15)0.0418 (12)0.0346 (12)0.0052 (12)0.0179 (11)0.0040 (10)
C30.0542 (16)0.0416 (13)0.0356 (13)0.0044 (12)0.0119 (12)−0.0022 (10)
C40.0453 (16)0.0383 (12)0.0458 (14)−0.0061 (11)0.0099 (12)−0.0029 (11)
C50.0400 (15)0.0406 (12)0.0456 (14)−0.0100 (11)0.0201 (12)0.0002 (10)
C60.0321 (13)0.0320 (11)0.0296 (12)0.0000 (10)0.0090 (10)0.0023 (9)
C70.0316 (13)0.0389 (11)0.0371 (12)−0.0088 (10)0.0131 (11)−0.0003 (10)
C80.0311 (13)0.0342 (11)0.0343 (12)−0.0021 (10)0.0151 (10)−0.0006 (10)
C90.0372 (14)0.0326 (11)0.0306 (12)−0.0039 (10)0.0173 (11)−0.0038 (9)
C100.0332 (13)0.0286 (11)0.0363 (12)−0.0039 (10)0.0156 (10)−0.0011 (9)
C110.0349 (13)0.0348 (12)0.0276 (11)0.0034 (10)0.0163 (10)0.0018 (9)
C120.0450 (14)0.0373 (12)0.0305 (12)−0.0057 (11)0.0128 (11)−0.0082 (9)
C130.0382 (14)0.0388 (12)0.0378 (13)−0.0110 (10)0.0132 (11)−0.0044 (10)
C140.0448 (14)0.0419 (11)0.0345 (12)−0.0099 (11)0.0134 (11)−0.0002 (10)
C150.0494 (16)0.0683 (15)0.0527 (15)−0.0233 (13)0.0186 (13)−0.0084 (12)
N10.0358 (12)0.0444 (10)0.0388 (10)−0.0033 (9)0.0187 (9)0.0033 (9)
N20.0353 (11)0.0403 (9)0.0398 (11)−0.0130 (8)0.0213 (9)−0.0045 (8)
N30.0310 (11)0.0416 (10)0.0355 (10)−0.0039 (8)0.0173 (9)0.0014 (8)
O10.0463 (10)0.0544 (9)0.0444 (10)−0.0174 (8)0.0215 (8)−0.0101 (7)
O20.0517 (11)0.0749 (10)0.0563 (10)−0.0173 (9)0.0363 (9)−0.0046 (8)
O30.0441 (9)0.0484 (8)0.0459 (9)−0.0189 (8)0.0284 (8)−0.0145 (7)
O40.0547 (11)0.0470 (9)0.0472 (9)−0.0078 (8)0.0339 (8)−0.0069 (7)

Geometric parameters (Å, °)

C1—C21.397 (2)C10—O31.365 (2)
C1—C61.407 (3)C10—C111.398 (2)
C1—N11.438 (2)C11—C121.367 (2)
C2—C31.365 (3)C11—O41.370 (2)
C2—H2A0.9300C12—C131.381 (3)
C3—C41.389 (3)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.361 (2)C14—O31.426 (2)
C4—H40.9300C14—C151.501 (3)
C5—C61.405 (2)C14—H14A0.9700
C5—H50.9300C14—H14B0.9700
C6—N21.359 (2)C15—H15A0.9600
C7—N31.273 (2)C15—H15B0.9600
C7—C81.451 (3)C15—H15C0.9600
C7—H70.9300N1—O21.2308 (19)
C8—C131.386 (2)N1—O11.2417 (18)
C8—C91.401 (2)N2—N31.380 (2)
C9—C101.373 (3)N2—H20.8600
C9—H90.9300O4—H110.8200
C2—C1—C6121.55 (18)C12—C11—O4119.34 (17)
C2—C1—N1116.94 (18)C12—C11—C10120.12 (17)
C6—C1—N1121.50 (17)O4—C11—C10120.54 (18)
C3—C2—C1120.59 (19)C11—C12—C13120.11 (18)
C3—C2—H2A119.7C11—C12—H12119.9
C1—C2—H2A119.7C13—C12—H12119.9
C2—C3—C4118.55 (19)C12—C13—C8120.53 (19)
C2—C3—H3120.7C12—C13—H13119.7
C4—C3—H3120.7C8—C13—H13119.7
C5—C4—C3121.6 (2)O3—C14—C15107.09 (16)
C5—C4—H4119.2O3—C14—H14A110.3
C3—C4—H4119.2C15—C14—H14A110.3
C4—C5—C6121.73 (19)O3—C14—H14B110.3
C4—C5—H5119.1C15—C14—H14B110.3
C6—C5—H5119.1H14A—C14—H14B108.6
N2—C6—C5119.98 (17)C14—C15—H15A109.5
N2—C6—C1124.03 (18)C14—C15—H15B109.5
C5—C6—C1115.98 (17)H15A—C15—H15B109.5
N3—C7—C8122.48 (18)C14—C15—H15C109.5
N3—C7—H7118.8H15A—C15—H15C109.5
C8—C7—H7118.8H15B—C15—H15C109.5
C13—C8—C9119.29 (18)O2—N1—O1121.13 (17)
C13—C8—C7118.99 (18)O2—N1—C1119.06 (16)
C9—C8—C7121.72 (17)O1—N1—C1119.80 (16)
C10—C9—C8119.83 (17)C6—N2—N3119.74 (16)
C10—C9—H9120.1C6—N2—H2120.1
C8—C9—H9120.1N3—N2—H2120.1
O3—C10—C9126.29 (18)C7—N3—N2115.88 (16)
O3—C10—C11113.60 (16)C10—O3—C14118.65 (14)
C9—C10—C11120.11 (19)C11—O4—H11109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.610 (2)128
O4—H11···O4i0.822.212.9842 (16)159

Symmetry codes: (i) −x+1, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2485).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography