PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): o2317.
Published online 2009 September 5. doi:  10.1107/S1600536809033455
PMCID: PMC2970175

1,4-Bis{(+)-(S)-[1-(1-naphth­yl)eth­yl]imino­meth­yl}benzene

Abstract

The title compound, C32H28N2, is a chiral bis-imine in which both imine groups display the common E configuration. The naphthyl groups present different orientations with respect to the central core, as reflected in the dihedral angles of 21.4 (2) and 78.83 (14)° between the benzene and naphthyl mean planes, thus the highest possible C 2 local molecular symmetry is not attained. This C 1 mol­ecular conformation allows multiple C—H(...)π inter­molecular contacts involving all aromatic rings, while no π–π inter­actions are available for the stabilization of the crystal structure. The resulting packing structure is based on mol­ecules stacked along [100].

Related literature

For solvent-free synthesis in organic chemistry, see: Jeon et al. (2005 [triangle]); Noyori (2005 [triangle]); Tanaka & Toda (2000 [triangle]); Tovar et al. (2007 [triangle]). For related chiral Schiff bases constructed from a bis-substituted benzene core, see: Allouchi et al. (1994 [triangle]); Hamaker & Oberts (2006 [triangle]); Espinosa Leija et al. (2009 [triangle]). For the use of the enanti­omer of the title compound as a chiral dopant for liquid crystals, see: Watanabe & Fukuda (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2317-scheme1.jpg

Experimental

Crystal data

  • C32H28N2
  • M r = 440.56
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2317-efi1.jpg
  • a = 8.391 (3) Å
  • b = 15.102 (5) Å
  • c = 19.569 (7) Å
  • V = 2479.6 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 K
  • 0.6 × 0.2 × 0.2 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: none
  • 6140 measured reflections
  • 2491 independent reflections
  • 1445 reflections with I > 2σ(I)
  • R int = 0.162
  • 3 standard reflections every 97 reflections intensity decay: 2.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.163
  • S = 1.10
  • 2491 reflections
  • 310 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033455/lh2874sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033455/lh2874Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Partial support from VIEP–UAP (GUPJ-NAT08-G) and SEP/PIFI-3 (CA-150 2006–22-08) is acknowledged.

supplementary crystallographic information

Comment

There is an increased interest in the use of environmentally benign reagents and conditions particularly to solvent-free procedures. Thus, avoiding organic solvents during the reactions in organic synthesis leads to clean, efficient and economical technology: safety is largely increased, working is considerably simplified, cost is reduced, increased amounts of reactants can be used, etc. Also, reactivities and sometimes selectivities are enhanced (Jeon et al., 2005; Noyori, 2005; Tanaka & Toda, 2000). On the other hand, bis-imines have lately attracted much attention, mostly due to their versatile coordination behavior and the interesting properties of their metal complexes. These compounds are particularly interesting since they can potentially act in a variety of coordination modes. Continuing our work on the synthesis and characterization of this kind of compounds (Tovar et al., 2007; Espinosa Leija et al., 2009), we synthesized the title compound under solvent-free conditions and report herein its crystal structure.

The molecule (Fig. 1) is constructed of a benzene ring para-substituted by two identical chiral fragments including imine functionality. The conformation stabilized in the solid-state has both imine groups displaying E configuration, previously observed in related systems (e.g. Allouchi et al., 1994). Naphthyl groups, which are potentially free to rotate about their σ bonds C1—C11 and C21—C23, show different orientations with respect to the central benzene ring. The dihedral angles between the central benzene ring C14···C19 and the naphthyl rings C1···C10 and C23···C32 are 21.4 (2) and 78.83 (14)°, respectively. The naphthyl systems make a dihedral angle of 73.69 (10)°. As a consequence, the molecule has C1 point symmetry rather than C2, and is not a good candidate for coordination to transition metals. In contrast, other related bis-imines based on a para-substituted benzene core approximate the C2 point symmetry (e.g. Hamaker & Oberts, 2006).

The crystal structure features a number of C—H···π intermolecular interactions of variable strength, involving all available aromatic rings (Fig. 2). Although no π–π contacts contribute to the stabilization of the crystal structure, the molecules are efficiently packed along the short [100] axis in the crystal. As a consequence, no voids are available for lattice solvent insertion, a situation contrasting with that observed for an isomeric system previously described (Espinosa Leija et al., 2009): for the meta-substituted molecule, a 1:1 solvate was crystallized with CH2Cl2, with solvent molecules filling large voids generated by the molecular conformation.

Interestingly, the enantiomer of the title compound has been registered (Watanabe & Fukuda, 2008; CAS registry number: 1021327–88-7) as a chiral dopant for nematic or cholesteric liquid crystals for generating large helical twisting power. This use is consistent with the high optical rotation measured for this molecule (see Experimental).

Experimental

Under solvent-free conditions, a mixture of benzene-1,4-dicarboxaldehyde (0.12 g, 0.93 mmol) and (S)-(-)-1-naphthylethylamine (0.32 g, 1.8 mmol) were mixed at 298 K, giving a white solid. The crude material was recrystallized twice from CH2Cl2, affording colorless crystals suitable for X-ray diffraction. Yield: 87%; m.p. 438 K (165 °C); [α]D25 = +413.3 (c 1, CHCl3). IR (KBr): 1632 cm-1 (C═N). 1H-NMR (400 MHz, CDCl3/TMS): δ = 1.73 (d, 6 H, CHCH3), 5.35 (q, 2H, CH), 7.45–8.24 (m, 18 H, Ar), 8.42 (s, 2 H, HC=N). 13C-NMR (100 MHz, CDCl3/TMS) δ = 24.4 (CCH3), 65.6 (CHCH3), 123.5 (Ar), 124.0 (Ar), 125.3 (Ar), 125.6 (Ar), 125.8 (Ar), 127.3 (Ar), 128.4 (Ar), 128.9 (Ar), 130.5 (Ar), 133.9 (Ar), 138.3 (Ar), 140.9 (Ar), 159.1 (HC=N). MS—EI: m/z= 440 (M+) for C32H28N2.

Refinement

All H atoms were placed in idealized positions with C—H bond lengths fixed to 0.93 (aromatic), 0.96 (methyl) or 0.98 Å (methine), and with methyl groups allowed to rotate about their C—C bonds. A riding refinement was applied, and isotropic displacement parameters were computed as Uiso(H) = 1.5Ueq(carrier atom) for the methyl groups and Uiso(H) = 1.2Ueq(carrier atom) otherwise. Friedel pairs (1571) were merged and the absolute configuration inferred from that of the commercial optically pure amine used as starting material.

Figures

Fig. 1.
The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level.
Fig. 2.
A part of the crystal structure of the title compound, with the asymmetric unit shown in green. Dashed lines represent C—H···π interactions in the crystal, and centroids of involved π systems have been represented ...

Crystal data

C32H28N2Dx = 1.180 Mg m3
Mr = 440.56Melting point: 438 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 100 reflections
a = 8.391 (3) Åθ = 4.8–11.4°
b = 15.102 (5) ŵ = 0.07 mm1
c = 19.569 (7) ÅT = 298 K
V = 2479.6 (14) Å3Needle, colorless
Z = 40.6 × 0.2 × 0.2 mm
F(000) = 936

Data collection

Siemens P4 diffractometerRint = 0.162
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.1°
graphiteh = −9→6
ω scansk = −17→17
6140 measured reflectionsl = −23→22
2491 independent reflections3 standard reflections every 97 reflections
1445 reflections with I > 2σ(I) intensity decay: 2.5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.163w = 1/[σ2(Fo2) + (0.0396P)2 + 0.384P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2491 reflectionsΔρmax = 0.18 e Å3
310 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.020 (3)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.1296 (6)0.6293 (2)0.04836 (18)0.0727 (12)
N20.0862 (6)1.0684 (2)0.17915 (19)0.0772 (13)
C10.0418 (6)0.4748 (2)0.0380 (2)0.0627 (12)
C2−0.0244 (7)0.4806 (3)0.1019 (2)0.0737 (14)
H2A−0.00070.52920.12920.088*
C3−0.1255 (8)0.4159 (3)0.1265 (3)0.0870 (17)
H3A−0.16940.42190.16990.104*
C4−0.1613 (8)0.3441 (3)0.0885 (3)0.0872 (17)
H4A−0.22840.30070.10610.105*
C5−0.0977 (7)0.3344 (3)0.0223 (3)0.0708 (13)
C6−0.1344 (8)0.2612 (3)−0.0191 (3)0.0862 (17)
H6A−0.19860.2165−0.00140.103*
C7−0.0796 (8)0.2534 (3)−0.0837 (3)0.0876 (17)
H7A−0.10630.2042−0.10990.105*
C80.0173 (8)0.3197 (3)−0.1110 (3)0.0799 (16)
H8A0.05280.3154−0.15590.096*
C90.0604 (7)0.3912 (3)−0.0719 (2)0.0708 (13)
H9A0.12760.4340−0.09030.085*
C100.0046 (6)0.4010 (2)−0.0043 (2)0.0633 (12)
C110.1588 (7)0.5439 (3)0.0144 (3)0.0733 (14)
H11A0.14960.5514−0.03520.088*
C120.3255 (7)0.5134 (3)0.0319 (4)0.107 (2)
H12A0.40090.55760.01790.161*
H12B0.34770.45890.00850.161*
H12C0.33370.50430.08030.161*
C130.1601 (7)0.6977 (3)0.0141 (2)0.0708 (14)
H13A0.19310.6908−0.03100.085*
C140.1463 (7)0.7871 (3)0.0412 (2)0.0643 (13)
C150.0690 (8)0.8039 (3)0.1020 (2)0.0793 (16)
H15A0.02090.75760.12570.095*
C160.0622 (8)0.8888 (3)0.1283 (2)0.0784 (16)
H16A0.01130.89900.16970.094*
C170.1308 (7)0.9588 (3)0.0932 (2)0.0642 (12)
C180.2021 (7)0.9427 (3)0.0316 (2)0.0670 (13)
H18A0.24500.98940.00670.080*
C190.2112 (7)0.8571 (3)0.0060 (2)0.0688 (13)
H19A0.26180.8471−0.03560.083*
C200.1253 (7)1.0499 (3)0.1189 (2)0.0695 (14)
H20A0.15171.09590.08940.083*
C210.0880 (7)1.1625 (3)0.1993 (2)0.0719 (14)
H21A0.10131.19940.15850.086*
C22−0.0707 (8)1.1827 (3)0.2317 (3)0.0884 (16)
H22A−0.15431.17160.19940.133*
H22B−0.07351.24370.24540.133*
H22C−0.08531.14550.27110.133*
C230.2264 (7)1.1784 (3)0.2475 (2)0.0694 (14)
C240.2964 (9)1.1093 (3)0.2803 (2)0.0887 (17)
H24A0.25751.05240.27290.106*
C250.4234 (11)1.1211 (5)0.3240 (3)0.116 (2)
H25A0.46901.07240.34550.139*
C260.4811 (10)1.2020 (5)0.3357 (3)0.115 (2)
H26A0.56651.20920.36550.138*
C270.4139 (9)1.2771 (4)0.3034 (3)0.0903 (18)
C280.4724 (11)1.3636 (5)0.3141 (3)0.117 (3)
H28A0.55841.37210.34330.141*
C290.4064 (11)1.4349 (4)0.2826 (4)0.115 (3)
H29A0.44691.49130.29030.137*
C300.2805 (10)1.4230 (4)0.2398 (3)0.102 (2)
H30A0.23521.47180.21840.123*
C310.2197 (8)1.3413 (3)0.2279 (2)0.0793 (15)
H31A0.13391.33510.19810.095*
C320.2831 (7)1.2664 (3)0.2593 (2)0.0710 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.082 (3)0.0544 (19)0.081 (2)−0.010 (2)0.003 (2)−0.0083 (18)
N20.104 (4)0.056 (2)0.072 (2)−0.013 (2)0.002 (3)−0.0035 (18)
C10.066 (3)0.047 (2)0.076 (3)−0.007 (2)−0.006 (3)0.000 (2)
C20.086 (4)0.061 (2)0.074 (3)−0.004 (3)0.004 (3)−0.001 (2)
C30.098 (5)0.081 (3)0.082 (3)−0.013 (4)0.011 (3)0.009 (3)
C40.088 (4)0.072 (3)0.102 (4)−0.015 (3)0.012 (4)0.012 (3)
C50.064 (3)0.051 (2)0.098 (3)−0.003 (2)−0.012 (3)−0.001 (2)
C60.082 (4)0.055 (3)0.122 (5)−0.007 (3)−0.020 (4)−0.008 (3)
C70.089 (4)0.061 (3)0.112 (4)−0.001 (3)−0.027 (4)−0.019 (3)
C80.085 (4)0.068 (3)0.087 (3)0.015 (3)−0.020 (3)−0.019 (3)
C90.074 (3)0.060 (2)0.078 (3)0.001 (3)−0.009 (3)−0.004 (2)
C100.063 (3)0.051 (2)0.076 (3)0.005 (2)−0.013 (3)−0.001 (2)
C110.086 (4)0.052 (2)0.082 (3)−0.012 (3)0.009 (3)−0.013 (2)
C120.075 (4)0.081 (3)0.166 (6)−0.016 (3)0.017 (4)−0.026 (4)
C130.081 (4)0.058 (2)0.074 (3)−0.010 (3)0.001 (3)−0.008 (2)
C140.074 (4)0.054 (2)0.065 (2)−0.012 (3)−0.004 (3)−0.003 (2)
C150.109 (5)0.060 (3)0.069 (3)−0.020 (3)0.012 (3)0.001 (2)
C160.106 (5)0.065 (3)0.064 (3)−0.012 (3)0.013 (3)−0.004 (2)
C170.070 (3)0.053 (2)0.070 (2)−0.012 (2)−0.003 (3)−0.003 (2)
C180.071 (3)0.055 (2)0.074 (3)−0.015 (3)0.011 (3)0.000 (2)
C190.073 (3)0.060 (2)0.073 (3)−0.008 (3)0.008 (3)0.001 (2)
C200.078 (4)0.056 (2)0.074 (3)−0.009 (3)−0.001 (3)0.001 (2)
C210.089 (4)0.055 (2)0.072 (3)−0.003 (3)0.001 (3)−0.006 (2)
C220.085 (4)0.082 (3)0.099 (4)−0.002 (3)−0.002 (3)−0.002 (3)
C230.075 (4)0.070 (3)0.063 (3)−0.004 (3)0.003 (3)−0.004 (2)
C240.113 (5)0.076 (3)0.077 (3)0.009 (4)−0.004 (4)0.005 (3)
C250.126 (7)0.123 (5)0.098 (4)0.022 (5)−0.037 (5)0.011 (4)
C260.104 (6)0.159 (6)0.082 (4)0.009 (6)−0.027 (4)−0.007 (4)
C270.087 (5)0.109 (4)0.075 (3)−0.011 (4)−0.002 (3)−0.018 (3)
C280.120 (6)0.144 (6)0.089 (4)−0.056 (6)−0.008 (4)−0.034 (4)
C290.147 (8)0.094 (4)0.103 (4)−0.046 (5)0.024 (5)−0.029 (4)
C300.139 (7)0.080 (3)0.088 (3)−0.017 (4)0.020 (4)−0.018 (3)
C310.098 (4)0.065 (3)0.076 (3)−0.005 (3)0.006 (3)−0.013 (2)
C320.076 (4)0.073 (3)0.064 (3)−0.005 (3)0.003 (3)−0.014 (2)

Geometric parameters (Å, °)

N1—C131.257 (5)C15—H15A0.9300
N1—C111.472 (5)C16—C171.386 (6)
N2—C201.255 (5)C16—H16A0.9300
N2—C211.476 (5)C17—C181.367 (6)
C1—C21.371 (6)C17—C201.465 (5)
C1—C101.423 (5)C18—C191.388 (5)
C1—C111.505 (6)C18—H18A0.9300
C2—C31.380 (7)C19—H19A0.9300
C2—H2A0.9300C20—H20A0.9300
C3—C41.350 (7)C21—C221.506 (8)
C3—H3A0.9300C21—C231.515 (7)
C4—C51.409 (7)C21—H21A0.9800
C4—H4A0.9300C22—H22A0.9600
C5—C61.406 (6)C22—H22B0.9600
C5—C101.420 (6)C22—H22C0.9600
C6—C71.350 (8)C23—C241.359 (7)
C6—H6A0.9300C23—C321.430 (6)
C7—C81.396 (7)C24—C251.378 (10)
C7—H7A0.9300C24—H24A0.9300
C8—C91.371 (6)C25—C261.335 (8)
C8—H8A0.9300C25—H25A0.9300
C9—C101.412 (6)C26—C271.415 (8)
C9—H9A0.9300C26—H26A0.9300
C11—C121.511 (8)C27—C321.406 (8)
C11—H11A0.9800C27—C281.412 (8)
C12—H12A0.9600C28—C291.358 (9)
C12—H12B0.9600C28—H28A0.9300
C12—H12C0.9600C29—C301.360 (11)
C13—C141.456 (5)C29—H29A0.9300
C13—H13A0.9300C30—C311.355 (7)
C14—C191.375 (6)C30—H30A0.9300
C14—C151.379 (6)C31—C321.393 (7)
C15—C161.383 (6)C31—H31A0.9300
C13—N1—C11116.4 (4)C17—C16—H16A119.8
C20—N2—C21117.5 (4)C18—C17—C16118.8 (4)
C2—C1—C10119.4 (4)C18—C17—C20118.9 (4)
C2—C1—C11120.0 (4)C16—C17—C20122.2 (4)
C10—C1—C11120.5 (4)C17—C18—C19120.6 (4)
C1—C2—C3121.5 (4)C17—C18—H18A119.7
C1—C2—H2A119.2C19—C18—H18A119.7
C3—C2—H2A119.2C14—C19—C18120.9 (4)
C4—C3—C2120.9 (5)C14—C19—H19A119.6
C4—C3—H3A119.6C18—C19—H19A119.6
C2—C3—H3A119.6N2—C20—C17122.6 (4)
C3—C4—C5120.4 (5)N2—C20—H20A118.7
C3—C4—H4A119.8C17—C20—H20A118.7
C5—C4—H4A119.8N2—C21—C22107.3 (5)
C6—C5—C4121.9 (5)N2—C21—C23109.1 (4)
C6—C5—C10118.6 (5)C22—C21—C23112.5 (4)
C4—C5—C10119.5 (4)N2—C21—H21A109.3
C7—C6—C5122.3 (5)C22—C21—H21A109.3
C7—C6—H6A118.9C23—C21—H21A109.3
C5—C6—H6A118.9C21—C22—H22A109.5
C6—C7—C8119.6 (5)C21—C22—H22B109.5
C6—C7—H7A120.2H22A—C22—H22B109.5
C8—C7—H7A120.2C21—C22—H22C109.5
C9—C8—C7120.4 (5)H22A—C22—H22C109.5
C9—C8—H8A119.8H22B—C22—H22C109.5
C7—C8—H8A119.8C24—C23—C32119.6 (5)
C8—C9—C10121.2 (5)C24—C23—C21120.2 (4)
C8—C9—H9A119.4C32—C23—C21120.2 (4)
C10—C9—H9A119.4C23—C24—C25121.8 (6)
C9—C10—C5118.0 (4)C23—C24—H24A119.1
C9—C10—C1123.7 (4)C25—C24—H24A119.1
C5—C10—C1118.3 (4)C26—C25—C24120.4 (6)
N1—C11—C1111.1 (4)C26—C25—H25A119.8
N1—C11—C12108.6 (5)C24—C25—H25A119.8
C1—C11—C12108.9 (4)C25—C26—C27120.8 (6)
N1—C11—H11A109.4C25—C26—H26A119.6
C1—C11—H11A109.4C27—C26—H26A119.6
C12—C11—H11A109.4C32—C27—C28117.9 (6)
C11—C12—H12A109.5C32—C27—C26119.6 (5)
C11—C12—H12B109.5C28—C27—C26122.5 (7)
H12A—C12—H12B109.5C29—C28—C27121.6 (6)
C11—C12—H12C109.5C29—C28—H28A119.2
H12A—C12—H12C109.5C27—C28—H28A119.2
H12B—C12—H12C109.5C28—C29—C30119.5 (6)
N1—C13—C14123.4 (4)C28—C29—H29A120.3
N1—C13—H13A118.3C30—C29—H29A120.3
C14—C13—H13A118.3C31—C30—C29121.3 (7)
C19—C14—C15118.5 (4)C31—C30—H30A119.4
C19—C14—C13119.9 (4)C29—C30—H30A119.4
C15—C14—C13121.5 (4)C30—C31—C32121.3 (6)
C14—C15—C16120.7 (4)C30—C31—H31A119.4
C14—C15—H15A119.7C32—C31—H31A119.4
C16—C15—H15A119.7C31—C32—C27118.4 (5)
C15—C16—C17120.5 (4)C31—C32—C23123.8 (5)
C15—C16—H16A119.8C27—C32—C23117.8 (5)
C10—C1—C2—C30.6 (8)C16—C17—C18—C19−2.5 (8)
C11—C1—C2—C3−176.5 (5)C20—C17—C18—C19179.3 (5)
C1—C2—C3—C40.6 (9)C15—C14—C19—C181.3 (8)
C2—C3—C4—C5−0.9 (9)C13—C14—C19—C18−178.7 (5)
C3—C4—C5—C6−179.0 (6)C17—C18—C19—C141.2 (8)
C3—C4—C5—C100.0 (8)C21—N2—C20—C17178.9 (5)
C4—C5—C6—C7177.0 (6)C18—C17—C20—N2−168.0 (5)
C10—C5—C6—C7−2.0 (8)C16—C17—C20—N213.9 (9)
C5—C6—C7—C80.2 (9)C20—N2—C21—C22129.1 (6)
C6—C7—C8—C91.8 (8)C20—N2—C21—C23−108.7 (5)
C7—C8—C9—C10−1.9 (8)N2—C21—C23—C24−18.5 (7)
C8—C9—C10—C50.1 (7)C22—C21—C23—C24100.5 (6)
C8—C9—C10—C1−178.3 (5)N2—C21—C23—C32162.1 (5)
C6—C5—C10—C91.8 (7)C22—C21—C23—C32−78.9 (6)
C4—C5—C10—C9−177.2 (5)C32—C23—C24—C25−1.2 (9)
C6—C5—C10—C1−179.8 (5)C21—C23—C24—C25179.5 (6)
C4—C5—C10—C11.2 (7)C23—C24—C25—C260.3 (11)
C2—C1—C10—C9176.8 (5)C24—C25—C26—C27−0.2 (11)
C11—C1—C10—C9−6.1 (7)C25—C26—C27—C321.0 (10)
C2—C1—C10—C5−1.5 (7)C25—C26—C27—C28−179.5 (7)
C11—C1—C10—C5175.5 (4)C32—C27—C28—C29−0.4 (10)
C13—N1—C11—C1−147.5 (5)C26—C27—C28—C29−180.0 (7)
C13—N1—C11—C1292.8 (6)C27—C28—C29—C300.1 (11)
C2—C1—C11—N1−27.7 (7)C28—C29—C30—C31−0.1 (10)
C10—C1—C11—N1155.2 (4)C29—C30—C31—C320.4 (9)
C2—C1—C11—C1291.8 (6)C30—C31—C32—C27−0.7 (8)
C10—C1—C11—C12−85.2 (6)C30—C31—C32—C23−178.5 (5)
C11—N1—C13—C14−176.5 (6)C28—C27—C32—C310.7 (8)
N1—C13—C14—C19167.0 (5)C26—C27—C32—C31−179.7 (6)
N1—C13—C14—C15−13.0 (9)C28—C27—C32—C23178.7 (5)
C19—C14—C15—C16−2.4 (9)C26—C27—C32—C23−1.8 (8)
C13—C14—C15—C16177.6 (6)C24—C23—C32—C31179.7 (6)
C14—C15—C16—C171.1 (9)C21—C23—C32—C31−0.9 (8)
C15—C16—C17—C181.4 (9)C24—C23—C32—C271.9 (7)
C15—C16—C17—C20179.5 (6)C21—C23—C32—C27−178.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.933.294.042 (6)140
C8—H8A···Cg2i0.933.143.797 (5)129
C12—H12A···Cg3ii0.962.793.677 (6)154
C18—H18A···Cg4ii0.932.623.520 (5)163
C20—H20A···Cg5ii0.932.983.681 (5)133

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2874).

References

  • Allouchi, H., Bideau, J. P., Cotrait, M., Destrade, Ch. & Nguyen, H. T. (1994). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 239, 153–164.
  • Espinosa Leija, A., Hernández, G., Cruz, S., Bernès, S. & Gutiérrez, R. (2009). Acta Cryst. E65, o1316. [PMC free article] [PubMed]
  • Hamaker, C. G. & Oberts, B. P. (2006). J. Chem. Crystallogr 36, 735–742.
  • Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc.127, 16416–16425. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Noyori, R. (2005). Chem. Commun. pp. 1807–1811. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tanaka, K. & Toda, F. (2000). Chem. Rev 100, 1025–1074. [PubMed]
  • Tovar, A., Penña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.
  • Watanabe, J. & Fukuda, K. (2008). Jpn. Kokai Tokkyo Koho Patent JP 2008106201.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography