PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 October 1; 65(Pt 10): m1187.
Published online 2009 September 9. doi:  10.1107/S1600536809034874
PMCID: PMC2970169

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2011 March 01; 67(Pt 3): e14    See also: PMC Retraction Policy

Tris(ethyl­enediamine)manganese(II) sulfate

Abstract

In the title compound, [Mn(C2H8N2)3]SO4, the metal atom (site symmetry 3.2) is coordinated by six N atoms from three ethyl­enediamine (en) ligands in a slightly distorted octa­hedral geometry. The en ligands are generated from one half-mol­ecule in the asymmetric unit. The O atoms of the sulfate anion (S site symmetry 3.2) are disordered over four orientations in a 0.220 (12):0.210 (13):0.203 (14):0.10 (2) ratio, with one of the O atoms having site symmetry 3. In the crystal, the ions are connected by N—H(...)O hydrogen bonds, forming a three-dimensional network.

Related literature

For a structure containing MnII and aromatic amine ligands, see: Shang et al. (2009 [triangle]). For other compounds containing transition metals coordinated by ethyl­enediamine, see: Cullen & Lingafelter (1970 [triangle]); Daniels et al. (1995 [triangle]); Jameson et al. (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1187-scheme1.jpg

Experimental

Crystal data

  • [Mn(C2H8N2)3]SO4
  • M r = 331.31
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-65-m1187-efi4.jpg
  • a = 8.9460 (13) Å
  • c = 9.6230 (19) Å
  • V = 666.96 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.17 mm−1
  • T = 293 K
  • 0.35 × 0.30 × 0.28 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.686, T max = 0.736
  • 2640 measured reflections
  • 402 independent reflections
  • 386 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.159
  • S = 1.55
  • 402 reflections
  • 44 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034874/hb5060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034874/hb5060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20671048) and the Doctoral Foundation of Liaocheng University (No. 31805).

supplementary crystallographic information

Comment

Ethylenediamine (en) ligand has been seen in a number of coordination compound (Cullen et al., 1970; Daniels et al., 1995 and Jameson et al., 1982), because it can not only chelate metal center by two nitrogen atoms, but also offer hydrogen atoms to form N—H···X hydrogen bonds. In this paper, we report the structure of the title compound, (I).

In the title compound (Fig. 1), [Mn(C2H8N2)3]SO4, the cation and anion are situated on a sixfold rotation axis. The Mn(II) is coordinated by six N atoms from three en ligands in a distorted octahedral geometry. The Mn—N bond length is 2.129 Å, which is shorter than the distance between Mn(II) and aromatic nitrogen atom (Shang et al., 2009). The O atoms of the sulfate anions are disordered. The disordered anions hydrogen bond with the coordination cations by N—H···O hydrogen bonds, forming three-dimensional supramolecular network. The hydrogen bond is listed in table 1.

Experimental

Manganese sulfate (0.2 mmol) and malic acid (0.4 mmol) were added to water (15 ml). The pH value was adjusted to 9 by en. Violet blocks of (I) were obtained after several days in 30% yield. Elemental analysis, Found:C, 21.73; H, 7.24; N, 25.35%. Calc. for C6H24N6MnSO4: C, 21.20; H, 7.00; N, 24.93%.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H 0.970 and N—H 0.900 Å, and with Uiso(H) = 1.2Ueq(C,N). The O atoms are resolved into four positions by PART instructions. The geometries and anisotropic displacement parameters of disordered atoms were refined with soft restraints using the SHELXL commands SUMP, SIMU and EADP.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability displacement ellipsoids. The symmetry codes for N and C atoms: A -y+1, x-y+1, z; B -x+y, -x+1, z; C -y+1, -x+1, -z+3/2; D -x+y, y, -z+3/2; E x, x-y+1, -z+3/2.

Crystal data

[Mn(C2H8N2)3]SO4Dx = 1.650 Mg m3
Mr = 331.31Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 2640 reflections
a = 8.9460 (13) Åθ = 2.6–25.0°
c = 9.6230 (19) ŵ = 1.17 mm1
V = 666.96 (19) Å3T = 293 K
Z = 2Block, violet
F(000) = 3500.35 × 0.30 × 0.28 mm

Data collection

Bruker SMART CCD diffractometer402 independent reflections
Radiation source: fine-focus sealed tube386 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −8→10
Tmin = 0.686, Tmax = 0.736k = −10→4
2640 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.159w = 1/[σ2(Fo2) + (0.0637P)2 + 1.2291P] where P = (Fo2 + 2Fc2)/3
S = 1.55(Δ/σ)max = 0.001
402 reflectionsΔρmax = 0.72 e Å3
44 parametersΔρmin = −0.63 e Å3
2 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.051 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.33330.66670.75000.0200 (8)
S10.33330.66670.25000.0332 (10)
O10.489 (3)0.813 (4)0.186 (2)0.051 (4)0.220 (12)
O20.489 (3)0.721 (6)0.163 (3)0.051 (4)0.210 (13)
O30.373 (6)0.799 (3)0.146 (3)0.051 (4)0.203 (14)
O40.33330.66670.114 (9)0.051 (4)0.10 (2)
N10.3136 (7)0.4590 (8)0.8712 (6)0.0427 (14)
H1A0.40720.44790.85810.051*
H1B0.30700.47910.96210.051*
C10.1570 (9)0.3007 (9)0.8275 (8)0.0491 (18)
H1C0.05610.29600.86920.059*
H1D0.16260.20020.85780.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0208 (9)0.0208 (9)0.0184 (12)0.0104 (5)0.0000.000
S10.0327 (13)0.0327 (13)0.034 (2)0.0163 (7)0.0000.000
O10.045 (8)0.042 (12)0.047 (7)0.008 (10)0.007 (6)0.000 (8)
O20.045 (8)0.042 (12)0.047 (7)0.008 (10)0.007 (6)0.000 (8)
O30.045 (8)0.042 (12)0.047 (7)0.008 (10)0.007 (6)0.000 (8)
O40.045 (8)0.042 (12)0.047 (7)0.008 (10)0.007 (6)0.000 (8)
N10.041 (3)0.051 (3)0.040 (3)0.026 (3)0.008 (2)0.000 (2)
C10.051 (4)0.053 (4)0.054 (4)0.035 (3)0.002 (3)−0.006 (3)

Geometric parameters (Å, °)

Mn1—N1i2.125 (6)S1—O2iii1.48 (3)
Mn1—N1ii2.125 (6)S1—O2vii1.48 (3)
Mn1—N1iii2.125 (6)S1—O2viii1.48 (3)
Mn1—N1iv2.125 (6)S1—O2ii1.48 (3)
Mn1—N1v2.125 (6)O1—O1viii1.74 (5)
Mn1—N12.125 (6)O2—O2viii1.72 (6)
S1—O41.30 (9)O3—O3iii1.82 (4)
S1—O4vi1.30 (9)O3—O3ii1.82 (4)
S1—O3vii1.45 (3)N1—C11.471 (9)
S1—O3iii1.45 (3)N1—H1A0.9000
S1—O31.45 (3)N1—H1B0.9000
S1—O3vi1.45 (3)C1—C1iv1.496 (15)
S1—O3ii1.45 (3)C1—H1C0.9700
S1—O3viii1.45 (3)C1—H1D0.9700
N1i—Mn1—N1ii81.6 (3)O3ii—S1—O2iii99.3 (13)
N1i—Mn1—N1iii93.5 (3)O3viii—S1—O2iii170.3 (17)
N1ii—Mn1—N1iii92.7 (2)O4—S1—O2vii124.3 (10)
N1i—Mn1—N1iv92.7 (2)O4vi—S1—O2vii55.7 (10)
N1ii—Mn1—N1iv93.5 (3)O3vii—S1—O2vii62.4 (15)
N1iii—Mn1—N1iv171.8 (3)O3iii—S1—O2vii97 (2)
N1i—Mn1—N1v92.7 (2)O3—S1—O2vii94 (3)
N1ii—Mn1—N1v171.8 (3)O3vi—S1—O2vii30.1 (12)
N1iii—Mn1—N1v81.6 (3)O3ii—S1—O2vii170.3 (17)
N1iv—Mn1—N1v92.7 (2)O3viii—S1—O2vii99.3 (13)
N1i—Mn1—N1171.8 (3)O2iii—S1—O2vii71 (2)
N1ii—Mn1—N192.7 (2)O4—S1—O2viii124.3 (11)
N1iii—Mn1—N192.7 (2)O4vi—S1—O2viii55.7 (10)
N1iv—Mn1—N181.6 (3)O3vii—S1—O2viii30.1 (12)
N1v—Mn1—N193.5 (3)O3iii—S1—O2viii170.3 (18)
O4—S1—O4vi180.000 (19)O3—S1—O2viii97 (2)
O4—S1—O3vii133.7 (10)O3vi—S1—O2viii99.3 (13)
O4vi—S1—O3vii46.3 (10)O3ii—S1—O2viii94 (3)
O4—S1—O3iii46.3 (10)O3viii—S1—O2viii62.4 (15)
O4vi—S1—O3iii133.7 (10)O2iii—S1—O2viii116 (3)
O3vii—S1—O3iii156 (4)O2vii—S1—O2viii91.3 (15)
O4—S1—O346.3 (10)O4—S1—O2ii55.7 (10)
O4vi—S1—O3133.7 (10)O4vi—S1—O2ii124.3 (10)
O3vii—S1—O390 (2)O3vii—S1—O2ii170.3 (17)
O3iii—S1—O377.5 (15)O3iii—S1—O2ii30.1 (12)
O4—S1—O3vi133.7 (10)O3—S1—O2ii99.3 (13)
O4vi—S1—O3vi46.3 (10)O3vi—S1—O2ii97 (2)
O3vii—S1—O3vi77.5 (15)O3ii—S1—O2ii62.4 (15)
O3iii—S1—O3vi90 (2)O3viii—S1—O2ii94 (3)
O3—S1—O3vi121 (3)O2iii—S1—O2ii91.3 (15)
O4—S1—O3ii46.3 (10)O2vii—S1—O2ii116 (3)
O4vi—S1—O3ii133.7 (10)O2viii—S1—O2ii147 (4)
O3vii—S1—O3ii121 (3)S1—O1—O1viii54.1 (11)
O3iii—S1—O3ii77.5 (15)S1—O2—O2viii54.5 (12)
O3—S1—O3ii77.5 (15)S1—O3—O3iii51.2 (7)
O3vi—S1—O3ii156 (4)S1—O3—O3ii51.2 (7)
O4—S1—O3viii133.7 (10)O3iii—O3—O3ii60.000 (1)
O4vi—S1—O3viii46.3 (10)C1—N1—Mn1107.9 (4)
O3vii—S1—O3viii77.5 (15)C1—N1—H1A110.1
O3iii—S1—O3viii121 (3)Mn1—N1—H1A110.1
O3—S1—O3viii156 (4)C1—N1—H1B110.1
O3vi—S1—O3viii77.5 (15)Mn1—N1—H1B110.1
O3ii—S1—O3viii90 (2)H1A—N1—H1B108.4
O4—S1—O2iii55.7 (10)N1—C1—C1iv108.9 (5)
O4vi—S1—O2iii124.3 (10)N1—C1—H1C109.9
O3vii—S1—O2iii97 (2)C1iv—C1—H1C109.9
O3iii—S1—O2iii62.4 (15)N1—C1—H1D109.9
O3—S1—O2iii30.1 (12)C1iv—C1—H1D109.9
O3vi—S1—O2iii94 (3)H1C—C1—H1D108.3
O4—S1—O1—O1viii−129 (2)O3vii—S1—O3—O3iii−159 (3)
O4vi—S1—O1—O1viii51 (2)O3vi—S1—O3—O3iii−83 (2)
O3vii—S1—O1—O1viii65.8 (19)O3ii—S1—O3—O3iii79.8 (10)
O3iii—S1—O1—O1viii−140 (3)O3viii—S1—O3—O3iii141.8 (18)
O3—S1—O1—O1viii179 (3)O2iii—S1—O3—O3iii−55 (3)
O3vi—S1—O1—O1viii100 (3)O2vii—S1—O3—O3iii−96 (3)
O3ii—S1—O1—O1viii−77 (2)O2viii—S1—O3—O3iii172 (3)
O3viii—S1—O1—O1viii0(2)O2ii—S1—O3—O3iii20.9 (16)
O2iii—S1—O1—O1viii171 (2)O4—S1—O3—O3ii−39.9 (5)
O2vii—S1—O1—O1viii112.2 (18)O4vi—S1—O3—O3ii140.1 (5)
O2viii—S1—O1—O1viii34.5 (19)O3vii—S1—O3—O3ii122 (4)
O2ii—S1—O1—O1viii−108 (3)O3iii—S1—O3—O3ii−79.8 (10)
O4—S1—O2—O2viii163 (4)O3vi—S1—O3—O3ii−163 (2)
O4vi—S1—O2—O2viii−17 (4)O3viii—S1—O3—O3ii62 (2)
O3vii—S1—O2—O2viii20 (2)O2iii—S1—O3—O3ii−135 (3)
O3iii—S1—O2—O2viii179 (4)O2vii—S1—O3—O3ii−176 (3)
O3—S1—O2—O2viii109 (4)O2viii—S1—O3—O3ii92 (3)
O3vi—S1—O2—O2viii−3(22)O2ii—S1—O3—O3ii−58.9 (16)
O3ii—S1—O2—O2viii−136 (5)N1i—Mn1—N1—C132.2 (4)
O3viii—S1—O2—O2viii−58 (2)N1ii—Mn1—N1—C178.5 (5)
O2iii—S1—O2—O2viii117 (4)N1iii—Mn1—N1—C1171.4 (4)
O2vii—S1—O2—O2viii61 (2)N1iv—Mn1—N1—C1−14.7 (3)
O2ii—S1—O2—O2viii−151 (4)N1v—Mn1—N1—C1−106.9 (4)
O4—S1—O3—O3iii39.9 (5)Mn1—N1—C1—C1iv41.5 (7)
O4vi—S1—O3—O3iii−140.1 (5)

Symmetry codes: (i) x, xy+1, −z+3/2; (ii) −x+y, −x+1, z; (iii) −y+1, xy+1, z; (iv) −x+y, y, −z+3/2; (v) −y+1, −x+1, −z+3/2; (vi) −y+1, −x+1, −z+1/2; (vii) −x+y, y, −z+1/2; (viii) x, xy+1, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ix0.902.283.16 (3)166
N1—H1A···O1x0.902.433.15 (3)138
N1—H1B···O1xi0.902.173.06 (2)170
N1—H1B···O2xi0.902.113.00 (2)167
N1—H1A···O2xii0.902.142.95 (5)148
N1—H1A···O3ix0.901.922.80 (3)166
N1—H1B···O3xi0.902.152.96 (3)150
N1—H1B···O3xiii0.902.363.18 (3)152
N1—H1B···O4xiv0.902.152.94 (7)146

Symmetry codes: (ix) xy+1, x, −z+1; (x) −x+1, −x+y, z+1/2; (xi) −x+y, −x+1, z+1; (xii) −x+1, −y+1, −z+1; (xiii) −y+1, xy+1, z+1; (xiv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5060).

References

  • Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem.9, 1858–1864.
  • Daniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32.
  • Jameson, G. B., Schneider, R., Dubler, E. & Oswald, H. R. (1982). Acta Cryst. B38, 3016–3020.
  • Shang, S.-M., Ren, C.-X., Wang, X., Lu, L.-D. & Yang, X.-J. (2009). Acta Cryst. E65, m1023–m1024. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography