PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2083.
Published online 2009 August 8. doi:  10.1107/S1600536809030013
PMCID: PMC2970161

Triclinic polymorph of dibenzotetra­thia­fulvalene

Abstract

Crystals of the title compound (DBTTF), C14H8S4, feature a triclinic polymorph different from two known monoclinic polymorphs. In this form, there are two independent centrosymmetric half-mol­ecules in the asymmetric unit. Although the mol­ecular orientations are relatively similar to one of monoclinic polymorphs, the packing motif is different.

Related literature

For the synthesis, see: Nakayama et al. (1976 [triangle]). For the monoclinic polymorphs of DBTTF, see: Emge et al. (1982 [triangle]); Brillante et al. (2008 [triangle]). For the electronic properties of DBTTF, see: Jigami et al. (1998 [triangle]). For the characteristics of field-effect transistors based on DBTTF, see, for example: Mas-Torrent et al. (2005 [triangle]); Shibata et al. (2008 [triangle]). For related structures, see: Mas-Torrent et al. (2004 [triangle]); Naraso et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2083-scheme1.jpg

Experimental

Crystal data

  • C14H8S4
  • M r = 304.46
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2083-efi1.jpg
  • a = 8.6562 (4) Å
  • b = 9.4144 (5) Å
  • c = 9.5144 (4) Å
  • α = 74.0424 (15)°
  • β = 63.6158 (13)°
  • γ = 65.5653 (14)°
  • V = 628.43 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 93 K
  • 0.35 × 0.25 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.663, T max = 0.896
  • 6216 measured reflections
  • 2871 independent reflections
  • 2193 reflections with F 2 > 2σ(F 2)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.110
  • S = 1.12
  • 2871 reflections
  • 164 parameters
  • All H-atom parameters refined
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030013/bt5019sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030013/bt5019Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (No. 19350092) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, the Mizuho Foundation for the Promotion of Sciences, the Global COE program ‘Education and Research Center for Emergence of New Molecular Chemistry’ and the Research Fellows of the Japan Society for the Promotion of Science.

supplementary crystallographic information

Comment

TTF and its derivatives have been well known as the most dominant electron donors (Jigami et al., 1998). Recently, some TTF derivatives have been used as organic semiconductors for organic field-effect transistors (OFETs) (Mas-Torrent et al., 2004; Naraso et al., 2006), which show high hole mobilities in both the single crystals and thin films. The title compound, dibenzotetrathiafulvalene (I), has also exhibited high mobility (Mas-Torrent et al., 2005; Shibata et al., 2008). Since the strong intermolecular interactions between the molecules are necessary for carrier transportation in organic conductors and semiconductors, the investigation of crystal structures are very important. The crystal structure of compound (I) has been reported as two monoclinic polymorphs, which are space group P21/c for α phase (Emge et al., 1982) and Cc for β phase (Brillante et al., 2008). These crystals were grown from solution and the existence of other two polymorphs has been found by means of lattice phonon confocal Raman microscopy and XRD. Herein, we report the single-crystal structure of compound (I) neither the α nor β phase.

The single-crystal of (I) which has been grown by vapour transport contains two crystallographically independent molecules with an inversion center. The molecules have chair-like structures which are slightly distorted from the molecular plane. The maximum deviations from the least-squares plane are 0.206 and 0.222 Å, and the average deviations are 0.085 and 0.111 Å. The molecular geometries in this phase are different from that in the α phase (average deviation: 0.037 Å) and similar to that in the β phase (maximum deviation: 0.235 Å, average deviation: 0.085 Å). The packing structure in this phase is a herringbone type with a tilt angle of 51.11° (Fig. 2), which is also similar to the β phase. However, the long axis is observed to be sliding and the number of intermolecular short contacts between the molecules is increased and the contact distances are shorter compared with the α and the β phase.

Experimental

To a stirred solution of 1,3-benzodithiolylium tetrafluoroborate (0.83 g, 3.5 mmol) in dichloromethane (30 ml) was added dropwise 1,8-diazabicyclo[5.4.0]undec-7-ene (1 ml) at room temperature. After being stirred for 4 h, the resulting precipitate was filtered, washed with dichloromethane and dried to give 0.30 g (58%) of the title compound. Yellow crystals of (I) suitable for X-ray analysis were obtained from slow vacuum sublimation in a gradient-temperature horizontal glass tube. A temperature of the source material was maintained at 480 K.

Refinement

H atoms were placed in calculated positions and refined in the riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH groups.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids. [symmetry codes: (i) 1 - x, 1 - y, 1 - z, (ii) -x, -y, 1 - z.]
Fig. 2.
A packing diagram for (I) viewed along the molecular long axis.

Crystal data

C14H8S4Z = 2
Mr = 304.46F(000) = 312.00
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.6562 (4) ÅCell parameters from 4982 reflections
b = 9.4144 (5) Åθ = 3.0–27.5°
c = 9.5144 (4) ŵ = 0.73 mm1
α = 74.0424 (15)°T = 93 K
β = 63.6158 (13)°Platelet, yellow
γ = 65.5653 (14)°0.35 × 0.25 × 0.15 mm
V = 628.43 (5) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer2193 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.028
ω scansθmax = 27.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −11→11
Tmin = 0.663, Tmax = 0.896k = −12→12
6216 measured reflectionsl = −12→11
2871 independent reflections

Refinement

Refinement on F2All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.037w = 1/[σ2(Fo2) + (0.0363P)2 + 1.1654P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.56 e Å3
2871 reflectionsΔρmin = −0.46 e Å3
164 parameters

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S(1)0.43963 (10)0.53797 (9)0.28891 (8)0.01843 (17)
S(2)0.60882 (10)0.24998 (8)0.46970 (9)0.02064 (17)
S(3)0.07081 (10)0.20979 (9)0.46015 (9)0.01946 (17)
S(4)−0.11044 (10)0.02886 (9)0.75183 (8)0.01913 (17)
C(1)0.5095 (3)0.4558 (3)0.4497 (3)0.0156 (5)
C(2)0.4701 (3)0.3575 (3)0.2425 (3)0.0172 (5)
C(3)0.5503 (3)0.2223 (3)0.3267 (3)0.0193 (5)
C(4)0.5830 (4)0.0743 (3)0.2954 (4)0.0241 (6)
C(5)0.5339 (4)0.0630 (4)0.1786 (4)0.0297 (7)
C(6)0.4545 (4)0.1975 (4)0.0947 (3)0.0291 (7)
C(7)0.4203 (4)0.3460 (4)0.1263 (3)0.0232 (6)
C(8)−0.0073 (3)0.0491 (3)0.5443 (3)0.0161 (5)
C(9)0.0398 (3)0.2558 (3)0.6390 (3)0.0181 (5)
C(10)−0.0446 (3)0.1709 (3)0.7768 (3)0.0173 (5)
C(11)−0.0710 (4)0.1986 (3)0.9235 (3)0.0222 (6)
C(12)−0.0092 (4)0.3109 (4)0.9306 (4)0.0270 (7)
C(13)0.0748 (4)0.3954 (3)0.7934 (4)0.0265 (6)
C(14)0.0984 (4)0.3703 (3)0.6477 (3)0.0211 (6)
H(1)0.6380−0.01760.35260.029*
H(2)0.5550−0.03730.15650.036*
H(3)0.42310.18830.01470.035*
H(4)0.36410.43780.06970.028*
H(5)−0.13020.14201.01740.027*
H(6)−0.02470.32961.02990.032*
H(7)0.11660.47130.79980.032*
H(8)0.15360.42990.55440.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S(1)0.0239 (3)0.0176 (3)0.0167 (3)−0.0073 (2)−0.0113 (2)0.0003 (2)
S(2)0.0255 (3)0.0145 (3)0.0260 (3)−0.0040 (2)−0.0158 (3)−0.0021 (3)
S(3)0.0250 (3)0.0186 (3)0.0157 (3)−0.0117 (3)−0.0055 (2)0.0000 (2)
S(4)0.0247 (3)0.0210 (3)0.0144 (3)−0.0139 (3)−0.0053 (2)0.0002 (2)
C(1)0.0180 (13)0.0138 (12)0.0156 (12)−0.0057 (11)−0.0079 (10)0.0008 (11)
C(2)0.0152 (12)0.0240 (14)0.0145 (12)−0.0101 (11)−0.0017 (10)−0.0065 (11)
C(3)0.0177 (13)0.0227 (14)0.0187 (13)−0.0077 (11)−0.0043 (11)−0.0069 (12)
C(4)0.0185 (14)0.0227 (15)0.0308 (16)−0.0098 (12)−0.0042 (12)−0.0068 (13)
C(5)0.0276 (16)0.0363 (18)0.0293 (16)−0.0187 (15)−0.0003 (13)−0.0150 (15)
C(6)0.0311 (16)0.048 (2)0.0188 (14)−0.0263 (16)−0.0015 (13)−0.0121 (15)
C(7)0.0245 (15)0.0366 (18)0.0138 (13)−0.0180 (14)−0.0046 (11)−0.0031 (13)
C(8)0.0163 (12)0.0164 (13)0.0155 (12)−0.0058 (11)−0.0077 (10)0.0017 (11)
C(9)0.0156 (12)0.0167 (13)0.0223 (14)−0.0043 (11)−0.0079 (11)−0.0032 (12)
C(10)0.0164 (12)0.0151 (13)0.0192 (13)−0.0036 (10)−0.0058 (11)−0.0046 (11)
C(11)0.0209 (14)0.0243 (15)0.0194 (14)−0.0075 (12)−0.0046 (12)−0.0049 (13)
C(12)0.0293 (16)0.0291 (17)0.0252 (16)−0.0077 (14)−0.0083 (13)−0.0135 (14)
C(13)0.0271 (15)0.0256 (16)0.0305 (16)−0.0112 (13)−0.0073 (13)−0.0109 (14)
C(14)0.0193 (13)0.0197 (14)0.0253 (15)−0.0101 (12)−0.0061 (12)−0.0024 (12)

Geometric parameters (Å, °)

S(1)—C(1)1.758 (3)C(8)—C(8)ii1.350 (5)
S(1)—C(2)1.757 (3)C(9)—C(10)1.395 (3)
S(2)—C(1)1.759 (2)C(9)—C(14)1.401 (5)
S(2)—C(3)1.759 (4)C(10)—C(11)1.391 (5)
S(3)—C(8)1.756 (3)C(11)—C(12)1.395 (6)
S(3)—C(9)1.748 (3)C(12)—C(13)1.389 (4)
S(4)—C(8)1.760 (2)C(13)—C(14)1.382 (5)
S(4)—C(10)1.759 (4)C(4)—H(1)0.950
C(1)—C(1)i1.349 (5)C(5)—H(2)0.950
C(2)—C(3)1.395 (4)C(6)—H(3)0.950
C(2)—C(7)1.396 (5)C(7)—H(4)0.950
C(3)—C(4)1.391 (5)C(11)—H(5)0.950
C(4)—C(5)1.396 (6)C(12)—H(6)0.950
C(5)—C(6)1.388 (4)C(13)—H(7)0.950
C(6)—C(7)1.393 (6)C(14)—H(8)0.950
S(1)···C(7)iii3.568 (3)H(1)···C(9)vi2.782
S(1)···C(10)iv3.578 (2)H(1)···C(10)vi2.985
S(2)···C(8)v3.359 (3)H(1)···C(11)vi3.504
S(2)···C(8)vi3.407 (2)H(1)···C(14)vi3.156
S(3)···C(6)3.574 (2)H(1)···H(1)vi2.754
C(1)···C(14)3.527 (4)H(1)···H(5)x3.260
C(4)···C(4)vi3.589 (4)H(1)···H(8)vi3.583
C(4)···C(10)vi3.545 (3)H(2)···S(2)vi3.552
C(6)···S(3)3.574 (2)H(2)···S(4)ii3.518
C(7)···S(1)iii3.568 (3)H(2)···C(6)xi3.202
C(7)···C(7)iii3.552 (5)H(2)···C(12)vi3.561
C(8)···S(2)vii3.359 (3)H(2)···H(2)xi3.329
C(8)···S(2)vi3.407 (2)H(2)···H(3)xi2.341
C(10)···S(1)iv3.578 (2)H(2)···H(5)x3.376
C(10)···C(4)vi3.545 (3)H(3)···S(1)iii3.433
C(11)···C(11)viii3.523 (4)H(3)···S(4)x3.590
C(14)···C(1)3.527 (4)H(3)···C(5)xi3.189
S(1)···H(3)iii3.433H(3)···H(2)xi2.341
S(1)···H(4)iii3.053H(3)···H(3)xi3.275
S(1)···H(7)i3.515H(3)···H(6)xiii3.486
S(1)···H(8)2.942H(4)···S(1)iii3.053
S(2)···H(1)vi3.291H(4)···C(2)iii3.154
S(2)···H(2)vi3.552H(4)···C(7)iii3.010
S(2)···H(8)3.384H(4)···C(11)iv3.309
S(3)···H(1)vi3.354H(4)···C(12)iv3.004
S(3)···H(8)iv3.135H(4)···C(13)iv3.223
S(4)···H(2)ii3.518H(4)···H(4)iii2.705
S(4)···H(3)ix3.590H(4)···H(6)iv3.215
S(4)···H(5)viii3.332H(4)···H(7)iv3.555
S(4)···H(6)viii3.480H(5)···S(4)viii3.332
C(1)···H(7)3.532H(5)···C(2)ix3.267
C(1)···H(7)i3.271H(5)···C(3)ix3.024
C(1)···H(8)2.881H(5)···C(4)ix2.848
C(1)···H(8)i3.484H(5)···C(5)ix2.925
C(2)···H(4)iii3.154H(5)···C(6)ix3.169
C(2)···H(5)x3.267H(5)···C(7)ix3.351
C(2)···H(8)3.019H(5)···C(10)viii3.252
C(3)···H(1)vi3.259H(5)···C(11)viii2.982
C(3)···H(5)x3.024H(5)···H(1)ix3.260
C(3)···H(8)3.235H(5)···H(2)ix3.376
C(4)···H(1)vi3.055H(5)···H(5)viii2.679
C(4)···H(5)x2.848H(6)···S(4)viii3.480
C(5)···H(3)xi3.189H(6)···C(13)xii3.245
C(5)···H(5)x2.925H(6)···H(3)xiv3.486
C(6)···H(2)xi3.202H(6)···H(4)iv3.215
C(6)···H(5)x3.169H(6)···H(6)xii3.273
C(7)···H(4)iii3.010H(6)···H(7)xii2.461
C(7)···H(5)x3.351H(7)···S(1)i3.515
C(9)···H(1)vi2.782H(7)···C(1)3.532
C(9)···H(8)iv3.254H(7)···C(1)i3.271
C(10)···H(1)vi2.985H(7)···C(12)xii3.293
C(10)···H(5)viii3.252H(7)···H(4)iv3.555
C(11)···H(1)vi3.504H(7)···H(6)xii2.461
C(11)···H(4)iv3.309H(7)···H(7)xii3.503
C(11)···H(5)viii2.982H(8)···S(1)2.942
C(12)···H(2)vi3.561H(8)···S(2)3.384
C(12)···H(4)iv3.004H(8)···S(3)iv3.135
C(12)···H(7)xii3.293H(8)···C(1)2.881
C(13)···H(4)iv3.223H(8)···C(1)i3.484
C(13)···H(6)xii3.245H(8)···C(2)3.019
C(14)···H(1)vi3.156H(8)···C(3)3.235
C(14)···H(8)iv3.215H(8)···C(9)iv3.254
H(1)···S(2)vi3.291H(8)···C(14)iv3.215
H(1)···S(3)vi3.354H(8)···H(1)vi3.583
H(1)···C(3)vi3.259H(8)···H(8)iv2.946
H(1)···C(4)vi3.055
C(1)—S(1)—C(2)95.02 (15)S(4)—C(10)—C(9)116.1 (2)
C(1)—S(2)—C(3)95.06 (16)S(4)—C(10)—C(11)123.3 (2)
C(8)—S(3)—C(9)95.27 (15)C(9)—C(10)—C(11)120.5 (3)
C(8)—S(4)—C(10)95.27 (16)C(10)—C(11)—C(12)119.0 (2)
S(1)—C(1)—S(2)115.5 (2)C(11)—C(12)—C(13)120.5 (3)
S(1)—C(1)—C(1)i122.5 (2)C(12)—C(13)—C(14)120.7 (4)
S(2)—C(1)—C(1)i122.0 (2)C(9)—C(14)—C(13)119.3 (2)
S(1)—C(2)—C(3)116.8 (3)C(3)—C(4)—H(1)120.5
S(1)—C(2)—C(7)122.9 (2)C(5)—C(4)—H(1)120.5
C(3)—C(2)—C(7)120.3 (3)C(4)—C(5)—H(2)119.8
S(2)—C(3)—C(2)116.6 (2)C(6)—C(5)—H(2)119.8
S(2)—C(3)—C(4)122.8 (2)C(5)—C(6)—H(3)119.6
C(2)—C(3)—C(4)120.6 (3)C(7)—C(6)—H(3)119.5
C(3)—C(4)—C(5)119.0 (3)C(2)—C(7)—H(4)120.6
C(4)—C(5)—C(6)120.3 (4)C(6)—C(7)—H(4)120.6
C(5)—C(6)—C(7)120.9 (4)C(10)—C(11)—H(5)120.5
C(2)—C(7)—C(6)118.8 (3)C(12)—C(11)—H(5)120.5
S(3)—C(8)—S(4)115.1 (2)C(11)—C(12)—H(6)119.8
S(3)—C(8)—C(8)ii122.2 (2)C(13)—C(12)—H(6)119.8
S(4)—C(8)—C(8)ii122.6 (2)C(12)—C(13)—H(7)119.6
S(3)—C(9)—C(10)117.1 (3)C(14)—C(13)—H(7)119.7
S(3)—C(9)—C(14)122.9 (2)C(9)—C(14)—H(8)120.4
C(10)—C(9)—C(14)120.0 (3)C(13)—C(14)—H(8)120.4
C(1)—S(1)—C(2)—C(3)−6.4 (2)C(3)—C(2)—C(7)—C(6)−0.9 (4)
C(1)—S(1)—C(2)—C(7)174.5 (2)C(7)—C(2)—C(3)—S(2)179.7 (2)
C(2)—S(1)—C(1)—S(2)10.26 (18)C(7)—C(2)—C(3)—C(4)0.5 (4)
C(2)—S(1)—C(1)—C(1)i−170.5 (2)S(2)—C(3)—C(4)—C(5)−179.3 (2)
C(1)—S(2)—C(3)—C(2)5.7 (2)C(2)—C(3)—C(4)—C(5)−0.2 (4)
C(1)—S(2)—C(3)—C(4)−175.2 (2)C(3)—C(4)—C(5)—C(6)0.3 (4)
C(3)—S(2)—C(1)—S(1)−10.05 (18)C(4)—C(5)—C(6)—C(7)−0.8 (4)
C(3)—S(2)—C(1)—C(1)i170.7 (2)C(5)—C(6)—C(7)—C(2)1.0 (4)
C(8)—S(3)—C(9)—C(10)−5.7 (2)S(3)—C(8)—C(8)ii—S(4)ii1.6 (3)
C(8)—S(3)—C(9)—C(14)173.1 (2)S(4)—C(8)—C(8)ii—S(3)ii−1.6 (3)
C(9)—S(3)—C(8)—S(4)10.05 (18)S(3)—C(9)—C(10)—S(4)−0.5 (2)
C(9)—S(3)—C(8)—C(8)ii−171.4 (2)S(3)—C(9)—C(10)—C(11)178.8 (2)
C(8)—S(4)—C(10)—C(9)6.4 (2)S(3)—C(9)—C(14)—C(13)−177.6 (2)
C(8)—S(4)—C(10)—C(11)−172.8 (2)C(10)—C(9)—C(14)—C(13)1.3 (4)
C(10)—S(4)—C(8)—S(3)−10.26 (18)C(14)—C(9)—C(10)—S(4)−179.4 (2)
C(10)—S(4)—C(8)—C(8)ii171.2 (2)C(14)—C(9)—C(10)—C(11)−0.1 (3)
S(1)—C(1)—C(1)i—S(2)i0.8 (3)S(4)—C(10)—C(11)—C(12)178.2 (2)
S(2)—C(1)—C(1)i—S(1)i−0.8 (3)C(9)—C(10)—C(11)—C(12)−1.0 (4)
S(1)—C(2)—C(3)—S(2)0.5 (2)C(10)—C(11)—C(12)—C(13)1.0 (4)
S(1)—C(2)—C(3)—C(4)−178.7 (2)C(11)—C(12)—C(13)—C(14)0.2 (3)
S(1)—C(2)—C(7)—C(6)178.2 (2)C(12)—C(13)—C(14)—C(9)−1.3 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z; (iv) −x, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y, −z+1; (vii) x−1, y, z; (viii) −x, −y, −z+2; (ix) x−1, y, z+1; (x) x+1, y, z−1; (xi) −x+1, −y, −z; (xii) −x, −y+1, −z+2; (xiii) x, y, z−1; (xiv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5019).

References

  • Brillante, A., Bilotti, I., Valle, R. G. D., Venuti, E., Milita, S., Dionigi, C., Borgatti, F., Lazar, A. N., Biscarini, F., Mas-Torrent, M., Oxtoby, N. S., Crivillers, N., Veciana, J., Rovira, C., Leufgen, M., Schmidt, G. & Molenkamp, L. W. (2008). CrystEngComm, 10, 1899–1909.
  • Emge, T. J., Wiygul, F. M., Chappell, J. S., Bloch, A. N., Ferraris, J. P., Cowan, D. O. & Kistenmacher, T. J. (1982). Mol. Cryst. Liq. Cryst.87, 137–161.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Jigami, T., Takimiya, K., Otsubo, T. & Aso, Y. (1998). J. Org. Chem.63, 8865–8872.
  • Mas-Torrent, M., Durkut, M., Hadley, P., Ribas, X. & Rovira, C. (2004). J. Am. Chem. Soc.126, 984–985. [PubMed]
  • Mas-Torrent, M., Hadley, P., Bromley, S. T., Crivillers, N., Veciana, J. & Rovira, C. (2005). Appl. Phys. Lett.86, 012110.
  • Nakayama, J., Fujiwara, K. & Hoshino, M. (1976). Bull. Chem. Soc. Jpn, 49, 3567–3573.
  • Naraso, Nishida, J., Kumaki, D., Tokito, S. & Yamashita, Y. (2006). J. Am. Chem. Soc.128, 9598–9599. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shibata, K., Ishikawa, K., Takezoe, H., Wada, H. & Mori, T. (2008). Appl. Phys. Lett.92, 023305.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography