PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2087.
Published online 2009 August 8. doi:  10.1107/S1600536809030256
PMCID: PMC2970159

4-(Benzyl­ideneamino)benzene­sulfonamide

Abstract

The title compound, C13H12N2O2S, formed by Schiff base condensation of benzaldehyde with sulfanilamide, crystallizes as discrete mol­ecular species linked by N—H(...)N and N—H(...)O hydrogen bonds between the sulfamide nitro­gen H atoms and the aza­methine N and one sulfamide O atom, respectively, forming a two-dimensional array in the bc plane. The aza­methine group is rotated slightly out of the benzaldehyde benzene plane [C—C—C—N torsion angle = 8.1 (3)°], while the dihedral angle between the two benzene rings is 30.0 (1)°.

Related literature

Condensation of substituted benzaldehydes with sulfanilamide yields a diverse array of Schiff bases which display inter­esting enzymatic inhibition, see Supuran et al. (1996 [triangle]); Lin et al. (2008 [triangle]). For our ongoing studies on the synthesis, structures and biological activity of organometallic Cp*Ru(II) arene complexes Loughrey et al. (2008 [triangle], 2009 [triangle]). For related structures, see Chumakov et al. (2006 [triangle]); Subashini et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2087-scheme1.jpg

Experimental

Crystal data

  • C13H12N2O2S
  • M r = 260.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2087-efi1.jpg
  • a = 14.5206 (8) Å
  • b = 11.4992 (6) Å
  • c = 7.7846 (5) Å
  • β = 103.287 (6)°
  • V = 1265.04 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 296 K
  • 0.43 × 0.31 × 0.20 mm

Data collection

  • Oxford-Diffraction Gemini S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.900, T max = 0.952
  • 8991 measured reflections
  • 2253 independent reflections
  • 1928 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 1.05
  • 2253 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030256/tk2519sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030256/tk2519Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge support of this work by Griffith University, the Queensland University of Technology and the Eskitis Institute for Cell and Molecular Therapies.

supplementary crystallographic information

Comment

Condensation of substituted benzaldehydes with sulfanilamide yields a diverse array of Schiff bases which display interesting enzymatic inhibition towards the carbonic anhydrase (CA) isozymes CA I, II and IV (Supuran et al., 1996) and the cyclo-oxogenase (COX) enzymes COX-1 and COX-2 (Lin et al., 2008). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic Cp*Ru(II) arene complexes with these and related benzenesulfonamides [Cp*Ru(R—Ph—SO2NH2)]X (Loughrey et al., 2008, 2009) we have prepared and determined the crystal structure of the title compound (I).

The crystal structure of (I) consists of discrete molecules (Fig. 1) with bond lengths in the normal range expected for this class of compound (Chumakov et al., 2006; Subashini et al., 2009). The –CH=N– azomethine group is rotated slightly out of the plane of the benzaldehyde benzene ring with the torsion angle C43—C42—C41—N4 = 8.1 (3)°. The dihedral angle between the two benzene rings is 30.0 (1)°. In the crystal lattice, the sulfamide nitrogen protons form N—H···N and N—H···O intermolecular hydrogen bonds with the azamethine nitrogen and the sulfamide oxygen O11 (Table 1, Fig. 2).

Experimental

Compound (I) was prepared according to established procedures (Lin et al., 2008). Sulfanilamide (1.0 g, 5.81 mmol) was dissolved in a minimum quantity of ethanol and the resulting solution heated to reflux. Benzaldehyde (0.59 ml, 5.81 mmol) was added dropwise over a period of 5 minutes, during which time a fine white precipitate started to form. The mixture was heated at reflux for a further 3 h, after which the solvent was cooled and concentrated in vacuo. The resulting white, crystalline precipitate was filtered and washed with cold ethanol. Yield = 1.47 g, 97%. M.p. 462–465 K. NMR 1H (d6 DMSO), δ 7.35 (br s, 2H, NH2), 7.37 - 7.40 (m, 2H, C6H4ortho), 7.51 - 7.57 (m, 3H, C6H5meta, para), 7.84 - 7.87 (m, 2H, C6H4meta), 7.94 - 7.97 (m, 2H, C6H5ortho), 8.64 (s, 1H, CH=N). Crystals suitable for X-ray diffraction studies were grown by slow evaporation of an acetone solution of (I).

Refinement

H atoms attached to carbon were constrained as riding atoms with C–H set to 0.95 Å, and with Uiso(H) values set to 1.2Ueq of the parent atom. The N protons were located in Fourier difference maps and constrained as riding atoms with N–H set to 0.86 - 0.87 Å, and with Uiso(H) values set to 1.2Ueq of the parent atom.

Figures

Fig. 1.
The structure of (I), with atom labels and 40% probability displacement ellipsoids for the non-H atoms.
Fig. 2.
Intermolecular hydrogen bonding interactions (dashed lines) for (I) leading a 2D array in the bc plane, viewed down the a axis.

Crystal data

C13H12N2O2SF(000) = 544
Mr = 260.32Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 6065 reflections
a = 14.5206 (8) Åθ = 3.2–32.1°
b = 11.4992 (6) ŵ = 0.25 mm1
c = 7.7846 (5) ÅT = 296 K
β = 103.287 (6)°Block, colourless
V = 1265.04 (13) Å30.43 × 0.31 × 0.20 mm
Z = 4

Data collection

Oxford-Diffraction Gemini S Ultra diffractometer2253 independent reflections
Radiation source: Enhance (Mo) X-ray Source1928 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 16.0774 pixels mm-1θmax = 25.2°, θmin = 3.2°
ω and [var phi] scansh = −17→16
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −13→13
Tmin = 0.900, Tmax = 0.952l = −7→9
8991 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0422P)2 + 0.369P] where P = (Fo2 + 2Fc2)/3
2253 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.32 (release 27-01-2009 CrysAlis171 .NET) (compiled Jan 27 2009,14:17:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.18567 (3)0.37673 (4)0.30521 (6)0.0398 (1)
O111.21041 (8)0.26127 (11)0.26279 (18)0.0556 (5)
O121.19451 (9)0.47053 (13)0.19034 (18)0.0621 (5)
N11.25128 (9)0.40557 (11)0.49616 (19)0.0418 (4)
N40.78277 (9)0.36050 (11)0.36083 (18)0.0389 (4)
C11.06568 (11)0.37128 (13)0.3201 (2)0.0345 (5)
C21.00490 (12)0.46245 (14)0.2581 (2)0.0420 (5)
C30.91150 (11)0.45702 (14)0.2709 (2)0.0431 (5)
C40.87847 (11)0.36039 (13)0.3457 (2)0.0350 (5)
C50.94078 (11)0.26993 (14)0.4104 (2)0.0383 (5)
C61.03363 (11)0.27468 (13)0.3960 (2)0.0380 (5)
C410.73681 (11)0.26550 (14)0.3389 (2)0.0409 (5)
C420.63915 (11)0.25305 (14)0.3574 (2)0.0405 (5)
C430.58382 (13)0.34722 (17)0.3798 (3)0.0584 (7)
C440.49211 (14)0.3309 (2)0.3954 (3)0.0685 (8)
C450.45425 (13)0.2225 (2)0.3881 (3)0.0638 (8)
C460.50775 (16)0.1288 (2)0.3660 (4)0.0746 (9)
C470.60028 (14)0.14359 (17)0.3505 (3)0.0629 (7)
H21.027300.528700.207000.0500*
H30.869800.519600.228300.0520*
H50.919100.204600.464800.0460*
H61.075500.212100.437900.0450*
H111.235000.471500.532200.0480*
H121.243800.352100.570000.0480*
H410.767600.198600.308800.0490*
H430.609200.423600.384500.0700*
H440.454900.396200.411600.0820*
H450.390800.212200.398200.0760*
H460.481500.052900.361200.0900*
H470.637000.077700.335100.0750*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0320 (2)0.0436 (2)0.0465 (3)−0.0013 (2)0.0148 (2)−0.0021 (2)
O110.0422 (7)0.0583 (8)0.0686 (9)0.0029 (6)0.0177 (6)−0.0237 (7)
O120.0473 (7)0.0774 (9)0.0668 (9)−0.0024 (6)0.0241 (6)0.0241 (7)
N10.0351 (7)0.0369 (7)0.0540 (9)−0.0028 (6)0.0118 (6)−0.0050 (6)
N40.0323 (7)0.0386 (7)0.0470 (8)0.0007 (6)0.0119 (6)−0.0024 (6)
C10.0308 (8)0.0361 (8)0.0373 (8)−0.0016 (6)0.0095 (6)−0.0039 (7)
C20.0416 (9)0.0326 (8)0.0550 (10)−0.0002 (7)0.0176 (8)0.0056 (7)
C30.0383 (9)0.0348 (8)0.0579 (11)0.0064 (7)0.0143 (8)0.0051 (8)
C40.0320 (8)0.0354 (8)0.0385 (8)−0.0003 (6)0.0102 (6)−0.0055 (7)
C50.0367 (8)0.0343 (8)0.0446 (9)−0.0019 (6)0.0109 (7)0.0041 (7)
C60.0336 (8)0.0347 (8)0.0443 (9)0.0027 (6)0.0064 (7)0.0031 (7)
C410.0359 (9)0.0387 (9)0.0488 (9)0.0015 (7)0.0112 (7)−0.0055 (7)
C420.0335 (8)0.0430 (9)0.0453 (9)−0.0030 (7)0.0097 (7)−0.0031 (7)
C430.0378 (10)0.0477 (10)0.0915 (15)−0.0012 (8)0.0188 (10)−0.0052 (10)
C440.0394 (11)0.0706 (14)0.0988 (17)0.0055 (10)0.0226 (11)−0.0102 (13)
C450.0366 (10)0.0868 (16)0.0701 (14)−0.0095 (10)0.0169 (9)−0.0023 (12)
C460.0548 (13)0.0639 (14)0.1079 (19)−0.0227 (11)0.0245 (13)−0.0024 (13)
C470.0462 (11)0.0489 (11)0.0965 (16)−0.0058 (9)0.0225 (11)−0.0086 (11)

Geometric parameters (Å, °)

S1—O111.4337 (13)C42—C431.383 (3)
S1—O121.4256 (15)C43—C441.378 (3)
S1—N11.6051 (15)C44—C451.358 (3)
S1—C11.7737 (17)C45—C461.362 (3)
N4—C41.421 (2)C46—C471.387 (3)
N4—C411.271 (2)C2—H20.9500
N1—H120.8700C3—H30.9500
N1—H110.8600C5—H50.9500
C1—C61.388 (2)C6—H60.9500
C1—C21.384 (2)C41—H410.9500
C2—C31.384 (2)C43—H430.9500
C3—C41.390 (2)C44—H440.9500
C4—C51.395 (2)C45—H450.9500
C5—C61.379 (2)C46—H460.9500
C41—C421.465 (2)C47—H470.9500
C42—C471.375 (3)
S1···H6i3.1100H2···C5iii2.9900
O11···C6i3.398 (2)H2···C6iii3.0200
O11···N1i2.9845 (19)H5···C412.7000
O11···H45ii2.6500H5···H412.2600
O11···H62.6900H5···C2v3.0200
O11···H6i2.8400H5···C3v3.0400
O11···H12i2.1300H6···O112.6900
O12···H22.5500H6···S1v3.1100
O12···H41iii2.6800H6···O11v2.8400
O12···H47iii2.7900H11···N4iv2.1400
N1···N4iv2.9955 (18)H11···C3iv3.0100
N1···O11v2.9845 (19)H11···C4iv2.8400
N4···N1iv2.9955 (18)H11···H43iv2.5100
N1···H43iv2.8200H12···O11v2.1300
N4···H432.6700H41···C52.5900
N4···H11iv2.1400H41···H52.2600
C6···O11v3.398 (2)H41···H472.4000
C44···C47v3.542 (3)H41···O12vi2.6800
C47···C44i3.542 (3)H43···N42.6700
C2···H5i3.0200H43···H46vii2.5400
C3···H11iv3.0100H43···N1iv2.8200
C3···H5i3.0400H43···H11iv2.5100
C4···H11iv2.8400H45···O11ix2.6500
C5···H2vi2.9900H46···C43x3.0300
C5···H412.5900H46···H43x2.5400
C6···H2vi3.0200H46···C46viii2.9600
C41···H52.7000H46···H46viii2.4300
C43···H46vii3.0300H47···H412.4000
C46···H46viii2.9600H47···O12vi2.7900
H2···O122.5500
O11—S1—O12119.52 (8)C43—C44—C45120.8 (2)
O11—S1—N1106.13 (8)C44—C45—C46119.6 (2)
O11—S1—C1106.51 (7)C45—C46—C47120.4 (2)
O12—S1—N1107.74 (8)C42—C47—C46120.39 (19)
O12—S1—C1107.41 (8)C1—C2—H2120.00
N1—S1—C1109.25 (7)C3—C2—H2120.00
C4—N4—C41118.77 (13)C2—C3—H3120.00
H11—N1—H12109.00C4—C3—H3120.00
S1—N1—H11110.00C4—C5—H5120.00
S1—N1—H12109.00C6—C5—H5120.00
S1—C1—C2120.51 (12)C1—C6—H6120.00
S1—C1—C6119.12 (12)C5—C6—H6120.00
C2—C1—C6120.36 (15)N4—C41—H41118.00
C1—C2—C3119.85 (15)C42—C41—H41118.00
C2—C3—C4120.29 (15)C42—C43—H43120.00
C3—C4—C5119.33 (15)C44—C43—H43120.00
N4—C4—C5122.43 (14)C43—C44—H44120.00
N4—C4—C3118.17 (14)C45—C44—H44120.00
C4—C5—C6120.41 (15)C44—C45—H45120.00
C1—C6—C5119.73 (15)C46—C45—H45120.00
N4—C41—C42124.13 (15)C45—C46—H46120.00
C41—C42—C43122.64 (15)C47—C46—H46120.00
C41—C42—C47118.91 (16)C42—C47—H47120.00
C43—C42—C47118.45 (17)C46—C47—H47120.00
C42—C43—C44120.38 (18)
O11—S1—C1—C2−141.95 (13)C2—C3—C4—C51.1 (2)
O11—S1—C1—C638.53 (15)N4—C4—C5—C6−178.65 (14)
O12—S1—C1—C2−12.78 (15)C3—C4—C5—C6−1.8 (2)
O12—S1—C1—C6167.69 (13)C4—C5—C6—C11.4 (2)
N1—S1—C1—C2103.82 (13)N4—C41—C42—C438.1 (3)
N1—S1—C1—C6−75.71 (14)N4—C41—C42—C47−172.62 (17)
C41—N4—C4—C3143.94 (15)C41—C42—C43—C44179.57 (18)
C41—N4—C4—C5−39.2 (2)C47—C42—C43—C440.3 (3)
C4—N4—C41—C42177.62 (14)C41—C42—C47—C46−179.4 (2)
S1—C1—C2—C3−179.89 (12)C43—C42—C47—C46−0.1 (3)
C6—C1—C2—C3−0.4 (2)C42—C43—C44—C45−0.4 (3)
S1—C1—C6—C5179.21 (12)C43—C44—C45—C460.3 (4)
C2—C1—C6—C5−0.3 (2)C44—C45—C46—C47−0.2 (4)
C1—C2—C3—C40.0 (2)C45—C46—C47—C420.1 (4)
C2—C3—C4—N4178.08 (14)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+2, −y+1, −z+1; (v) x, −y+1/2, z+1/2; (vi) −x+2, y−1/2, −z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+1, −y, −z+1; (ix) x−1, y, z; (x) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H11···N4iv0.862.142.9955 (18)171
N1—H12···O11v0.872.132.9845 (19)171

Symmetry codes: (iv) −x+2, −y+1, −z+1; (v) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2519).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Chumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., Palomares-Sanches, S. A., Oritz, R. S. & Gulya, A. P. (2006). J. Struct. Chem.47, 923–929.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Lin, S. J., Tsai, W. J., Chiou, W. F., Yang, T. H. & Yang, L. M. (2008). Bioorg. Med. Chem.16, 2697–2706. [PubMed]
  • Loughrey, B. T., Williams, M. L., Healy, P. C., Innocenti, A., Vullo, D., Supuran, C. T., Parsons, P. G. & Poulsen, S.-A. (2009). J. Biol. Inorg. Chem.14, 935–945. [PubMed]
  • Loughrey, B. T., Williams, M. L., Poulsen, S.-A. & Healy, P. C. (2008). Acta Cryst. E64, m1568. [PMC free article] [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Subashini, A., Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2009). J. Chem. Crystallogr.39, 112–116.
  • Supuran, C. T., Nicolae, A. & Popescu, A. (1996). Eur. J. Med. Chem.31, 431–438.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography