PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2075–o2076.
Published online 2009 August 8. doi:  10.1107/S1600536809029894
PMCID: PMC2970152

5-[1-(3,4-Dichloro­phen­oxy)eth­yl]-1,3,4-oxadiazole-2(3H)-thione hemihydrate

Abstract

In the title compound, C10H8Cl2N2O2S·0.5H2O, the atoms in the oxadiazole ring are essentially coplanar (r.m.s. deviation 0.010 Å). The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds involving the water mol­ecule, which is situated on an a twofold rotation axis, and two organic mol­ecules, leading to a thione tautomer in the solid state. The C atom attached to the oxadiazole ring adopts a typical sp3 hybridization. The dihedral angle between the mean plane of the benzene ring of the dichloro­phenyl group and the mean plane of the oxadiazole ring is 74.18 (4)°. The crystal structure is stabilized by intermolecular N—H(...)O and O—H(...)S hydrogen bonds.

Related literature

For the structures and properties of oxadiazoles, see: Almasirad et al., (2004 [triangle]); Aboraia et al. (2006 [triangle]); Akhtar, Hameed, Al-Masoudi et al. (2008 [triangle]); Khan et al. (2005 [triangle]); Akhtar, Hameed et al. (2007 [triangle]); Akhtar, Hameed, Khan et al. (2008 [triangle]); Akhtar, Rauf et al. (2007 [triangle]); Aydogan et al., 2002 [triangle]). For a related structure, see: Thamotharan et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2075-scheme1.jpg

Experimental

Crystal data

  • C10H8Cl2N2O2S·0.5H2O
  • M r = 300.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2075-efi1.jpg
  • a = 11.8725 (2) Å
  • b = 7.89320 (10) Å
  • c = 26.6092 (4) Å
  • β = 92.9130 (10)°
  • V = 2490.38 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 123 K
  • 0.40 × 0.30 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 10568 measured reflections
  • 3088 independent reflections
  • 2490 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.078
  • S = 1.09
  • 3088 reflections
  • 162 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029894/su2129sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029894/su2129Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Professor G. B. Jameson, Institute of Fundamental Sciences, Private Bag 11 222, Massey University, Palmerston North, New Zealand, for fruitful discussions.

supplementary crystallographic information

Comment

1,3,4-Oxadiazoles are an important class of five-membered heterocycles. They show diverse biological activities, for example, antifungal, antibacterial (Almasirad et al., 2004), anti-convulsant (Aboraia et al. 2006), antitumour (Akhtar, Hameed, Khan et al., 2008) and enzyme inhibitory activities (Khan et al., 2005). In continuation to our work on five membered heterocycles (Akhtar & Hameed et al., 2007), the title compound was synthesized and evaluated for its biological activities (Akhtar et al., 2008a). Herein, we report on the crystal structure of 5-[1-(3,4-dichlorophenoxy) ethyl]-1,3,4-oxadiazole-2(3H)-thione, derived from 3,4-dichlorophenoxy propionic acid (Akhtar & Rauf et al., 2007).

The molecular structure of the title compound is illustrated in Fig. 1. The dihedral angle between the mean planes of the benzene and 1,3,4-oxadiazole rings is 74.18 (4)°. The bond lengths and angles are in good agreement with the expected values (Allen et al., 1987; Thamotharan et al., 2005). The N1—N2 [1.3817 (16) A°] and C1=S1 [1.6489 (13) A°] bond lengths correspond to the usual single bond N—N distance and C=S distance.

1,3,4-Oxadizole-2-thiones/thiols can exist in two tautomeric forms (Aydogan et al., 2002). In the title compound the thione form is observed. The H-atom of the thiol group has been transferred to the adjacent N atom of the oxadiazole ring (Fig. 1).

The title compound crystallized as a hemihydrate, with the water molecule lieing on a crystallographic two-fold axis. The water molecule O-atom hydrogen bonds to the NH group, while the water H-atom hydrogen bonds to the S-atom of the S=C moiety (see Table 1 and Fig. 2).

Experimental

3,4-dichlorophenoxy acid hydrazide (10.30 mmol) was stirred with KOH (12.37 mmol) dissolved in methanol (30 ml). Carbon disulfide (0.75 mL, 12.37 mmol) was added slowly with stirring. The yellow solution obtained was refluxed until the evolution of hydrogen sulfide had ceased (18h). The reaction mixture was then cooled to rt and filtered. The filtrate was then poured into ice cooled water and acidified with 6M HCl until the colour turned congo red. The precipitate that formed was filtered off and dried. Recrystallization from ethanol/water (1:1) afforded colorless block-like crystals, suitable for X-ray diffraction analysis.

Refinement

The water H-atom was located from a difference electron-density map and refined (O-H = 0.846 (17) Å), with Uiso(H) = 1.3Ueq(O). The other H-atoms were placed in idealized positions and treated as riding atoms: N-H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.2Ueq(N,C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Partial crystal packing diagram of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed pale-blue lines.

Crystal data

C10H8Cl2N2O2S·0.5H2OF(000) = 1224
Mr = 300.15Dx = 1.601 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4427 reflections
a = 11.8725 (2) Åθ = 3.1–28.3°
b = 7.8932 (1) ŵ = 0.68 mm1
c = 26.6092 (4) ÅT = 123 K
β = 92.913 (1)°Block, colorless
V = 2490.38 (6) Å30.40 × 0.30 × 0.25 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer2490 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
graphiteθmax = 28.3°, θmin = 3.1°
[var phi] and ω scansh = −15→15
10568 measured reflectionsk = −10→10
3088 independent reflectionsl = −35→35

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0399P)2 + 0.7008P] where P = (Fo2 + 2Fc2)/3
3088 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.25873 (7)0.32348 (12)0.33123 (4)0.0347 (2)
C10.26630 (11)0.47444 (17)0.30643 (5)0.0321 (3)
S10.15653 (3)0.59419 (5)0.290316 (15)0.04313 (11)
N10.37606 (9)0.49544 (15)0.30057 (4)0.0373 (3)
H10.40400.58140.28570.045*
N20.44029 (9)0.36407 (16)0.32095 (5)0.0379 (3)
C20.36727 (11)0.26539 (17)0.33892 (5)0.0330 (3)
C30.38524 (12)0.09920 (18)0.36521 (5)0.0381 (3)
H30.46300.06120.36160.046*
C40.30442 (15)−0.0347 (2)0.34486 (6)0.0495 (4)
H4A0.3187−0.13930.36250.074*
H4B0.3148−0.05100.30960.074*
H4C0.22840.00100.34950.074*
O20.36403 (8)0.11531 (14)0.41765 (4)0.0417 (2)
C50.44340 (11)0.18810 (17)0.45029 (5)0.0351 (3)
C60.54468 (11)0.25923 (18)0.43709 (5)0.0374 (3)
H60.56490.25840.40380.045*
C70.61526 (11)0.33147 (19)0.47429 (5)0.0379 (3)
H70.68300.37970.46560.046*
C80.58683 (11)0.33307 (17)0.52386 (5)0.0354 (3)
Cl10.67766 (3)0.42681 (5)0.568937 (14)0.04480 (11)
C90.48523 (12)0.26045 (17)0.53664 (5)0.0360 (3)
Cl20.44427 (3)0.26092 (6)0.598122 (14)0.05328 (13)
C100.41405 (11)0.18835 (18)0.50013 (5)0.0380 (3)
H100.34640.13990.50890.046*
O1W0.50000.75760 (19)0.25000.0457 (4)
H1W0.5445 (15)0.817 (2)0.2687 (7)0.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0320 (4)0.0336 (5)0.0389 (5)0.0003 (4)0.0056 (4)0.0056 (4)
C10.0360 (6)0.0313 (7)0.0291 (6)0.0000 (5)0.0026 (5)−0.0009 (5)
S10.03808 (18)0.0406 (2)0.0504 (2)0.00707 (14)−0.00080 (15)0.00403 (16)
N10.0354 (5)0.0342 (6)0.0425 (6)0.0001 (5)0.0062 (5)0.0078 (5)
N20.0337 (5)0.0384 (6)0.0419 (6)0.0037 (5)0.0046 (5)0.0045 (5)
C20.0349 (6)0.0327 (7)0.0315 (6)0.0034 (5)0.0032 (5)−0.0013 (5)
C30.0434 (7)0.0358 (7)0.0355 (7)0.0051 (6)0.0045 (6)0.0038 (6)
C40.0664 (10)0.0345 (8)0.0473 (9)−0.0019 (7)−0.0005 (7)0.0028 (7)
O20.0414 (5)0.0494 (6)0.0344 (5)−0.0037 (4)0.0027 (4)0.0062 (4)
C50.0356 (6)0.0341 (7)0.0356 (7)0.0075 (5)0.0025 (5)0.0065 (6)
C60.0361 (7)0.0437 (8)0.0328 (7)0.0066 (6)0.0058 (5)0.0059 (6)
C70.0335 (6)0.0409 (8)0.0400 (7)0.0065 (6)0.0065 (5)0.0052 (6)
C80.0361 (6)0.0332 (7)0.0371 (7)0.0098 (5)0.0019 (5)0.0023 (6)
Cl10.04519 (19)0.0466 (2)0.0423 (2)0.00724 (15)−0.00057 (14)−0.00463 (16)
C90.0402 (7)0.0363 (7)0.0321 (7)0.0119 (6)0.0074 (5)0.0071 (6)
Cl20.0564 (2)0.0696 (3)0.03508 (19)0.00834 (19)0.01402 (16)0.00641 (18)
C100.0364 (7)0.0380 (8)0.0401 (7)0.0051 (6)0.0078 (6)0.0096 (6)
O1W0.0431 (8)0.0329 (8)0.0612 (10)0.0000.0048 (7)0.000

Geometric parameters (Å, °)

O1—C11.3672 (16)O2—C51.3745 (17)
O1—C21.3733 (15)C5—C101.3882 (19)
C1—N11.3306 (16)C5—C61.3884 (19)
C1—S11.6489 (13)C6—C71.387 (2)
N1—N21.3817 (16)C6—H60.9300
N1—H10.8600C7—C81.3783 (19)
N2—C21.2763 (18)C7—H70.9300
C2—C31.4967 (19)C8—C91.3931 (19)
C3—O21.4363 (17)C8—Cl11.7371 (15)
C3—C41.509 (2)C9—C101.378 (2)
C3—H30.9800C9—Cl21.7302 (14)
C4—H4A0.9600C10—H100.9300
C4—H4B0.9600O1W—H1W0.846 (17)
C4—H4C0.9600
C1—O1—C2106.18 (10)H4A—C4—H4C109.5
N1—C1—O1104.71 (11)H4B—C4—H4C109.5
N1—C1—S1131.59 (11)C5—O2—C3120.17 (10)
O1—C1—S1123.69 (9)O2—C5—C10114.02 (12)
C1—N1—N2112.63 (11)O2—C5—C6125.73 (12)
C1—N1—H1123.7C10—C5—C6120.25 (14)
N2—N1—H1123.7C7—C6—C5119.04 (13)
C2—N2—N1103.48 (10)C7—C6—H6120.5
N2—C2—O1112.99 (12)C5—C6—H6120.5
N2—C2—C3128.79 (12)C8—C7—C6121.23 (13)
O1—C2—C3118.20 (11)C8—C7—H7119.4
O2—C3—C2110.40 (11)C6—C7—H7119.4
O2—C3—C4105.72 (12)C7—C8—C9119.15 (13)
C2—C3—C4111.92 (12)C7—C8—Cl1119.41 (11)
O2—C3—H3109.6C9—C8—Cl1121.44 (10)
C2—C3—H3109.6C10—C9—C8120.36 (12)
C4—C3—H3109.6C10—C9—Cl2118.41 (11)
C3—C4—H4A109.5C8—C9—Cl2121.22 (11)
C3—C4—H4B109.5C9—C10—C5119.97 (13)
H4A—C4—H4B109.5C9—C10—H10120.0
C3—C4—H4C109.5C5—C10—H10120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.862.062.9084 (16)168
O1W—H1W···S1i0.846 (17)2.612 (18)3.3854 (13)152.5 (17)

Symmetry codes: (i) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2129).

References

  • Aboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. M. & El-Gendy, M. A. (2006). Bioorg. Med. Chem.14, 1236–1246. [PubMed]
  • Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem.18, 316–322.
  • Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008a). Acta Pharm.58, 135–149. [PubMed]
  • Akhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008b). Med. Chem.4, 539–543. [PubMed]
  • Akhtar, T., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2007). Acta Cryst. E63, o2590–o2592.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezade, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett.14, 6057–6059. [PubMed]
  • Aydogan, F., Turgut, Z., Ocal, N. & Erdem, S. S. (2002). Turk. J. Chem. pp. 159–163.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Khan, M. T. H., Choudhary, M. I., Khan, K. M., Rani, M. & Rahman, A. (2005). Bioorg. Med. Chem.13, 3385–3395. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thamotharan, S., Parthasarathi, V., Anandha Babu, G., Hunnur, R. K., Badami, B. & Linden, A. (2005). Acta Cryst. E61, o3746–o3747.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography