PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2067.
Published online 2009 August 8. doi:  10.1107/S1600536809029535
PMCID: PMC2970145

N-(4-Methoxy­phen­yl)pivalamide

Abstract

In the title mol­ecule, C12H17NO2, the amide (N—C=O) plane is oriented at an angle of 33.9 (1)° with respect to the aromatic ring. This is accompanied by an intra­molecular C—H(...)O hydrogen bond. The meth­oxy group lies almost in the plane of the benzene ring [C–O–C–C torsion angle = 2.7 (2)°]. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For details of the biological activity of benzanilides, see: Olsson et al. (2002 [triangle]); Lindgren et al. (2001 [triangle]); Calderone et al. (2006 [triangle]). For the use of benzamides in organic synthesis, see: Zhichkin et al. (2007 [triangle]); Beccalli et al. (2005 [triangle]). For related structures see: Gowda et al. (2007a [triangle],b [triangle]); Saeed et al. (2008 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2067-scheme1.jpg

Experimental

Crystal data

  • C12H17NO2
  • M r = 207.27
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2067-efi1.jpg
  • a = 9.5547 (13) Å
  • b = 10.0657 (15) Å
  • c = 24.575 (4) Å
  • V = 2363.5 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 120 K
  • 0.40 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.969, T max = 0.984
  • 17959 measured reflections
  • 2817 independent reflections
  • 2158 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.120
  • S = 1.02
  • 2817 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029535/fl2254sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029535/fl2254Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AS gratefully acknowledges a research grant from Quaid-i-Azam University Islamabad under the URF program (DFNS/2009-36).

supplementary crystallographic information

Comment

N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005).

The molecular structure of the title compound (Fig. 1)is closely related to two other compounds (Gowda et al., 2007a; 2007b) that exhiibt a methyl or chloro ligand instead of the methoxy group (CCDC refcodes HIDVOG and QIFKAS (Allen, 2002)), respectively. The dihedral angles between the benzene ring and the amide group are 33.9 (1)° for the title molecule and 32.8 (1)° for HIDVOG and 31.3 (1)° for QIFKAS, respectively. The C8–O2–C5–C6 torsion angle of 2.7 (2)° shows almost in-plane orientation of the methoxy group with respect to the aromatic ring. In the cystal structure, intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the direction (Fig. 2). A somewhat longer intramolecular C–H···O hydrogen bond is associated with the twist of the amide plane.

Experimental

Pivaloyl chloride (1 mmol) in CHCl3 was treated with 4-methoxyaniline (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in methanol afforded the title compound (84%) as white needles: Anal. calcd. for C12H17NO2: C 59.54, H 8.27, N 6.76%; found: 59.51, H 8.31, N 6.82%.

Refinement

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the C (C–H = 0.95–0.99 Å) or N (N–H = 0.88 Å) atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq / Neq) and 1.5U(Cmethyl). All methyl hydrogen atoms were allowed to rotate but not to tip.

Figures

Fig. 1.
Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Crystal data

C12H17NO2F(000) = 896
Mr = 207.27Dx = 1.165 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 778 reflections
a = 9.5547 (13) Åθ = 2.7–27.0°
b = 10.0657 (15) ŵ = 0.08 mm1
c = 24.575 (4) ÅT = 120 K
V = 2363.5 (6) Å3Block, colourless
Z = 80.40 × 0.25 × 0.20 mm

Data collection

Bruker SMART APEX diffractometer2817 independent reflections
Radiation source: sealed tube2158 reflections with I > 2σ(I)
graphiteRint = 0.053
[var phi] and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −9→12
Tmin = 0.969, Tmax = 0.984k = −13→13
17959 measured reflectionsl = −31→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.120H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0527P)2 + 0.8944P] where P = (Fo2 + 2Fc2)/3
2817 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.23114 (10)0.78822 (9)0.15214 (4)0.0261 (2)
O2−0.30713 (11)0.99245 (12)0.02439 (5)0.0353 (3)
N10.18414 (12)1.00795 (11)0.14651 (5)0.0221 (3)
H1A0.21221.08750.15660.027*
C10.26370 (14)0.90357 (13)0.16238 (5)0.0196 (3)
C20.05959 (14)1.00104 (13)0.11504 (5)0.0203 (3)
C3−0.03786 (15)0.89929 (13)0.12087 (6)0.0233 (3)
H3A−0.02130.82930.14600.028*
C4−0.15869 (15)0.90042 (14)0.09003 (6)0.0264 (3)
H4A−0.22490.83070.09400.032*
C5−0.18439 (15)1.00250 (15)0.05324 (6)0.0253 (3)
C6−0.08911 (16)1.10480 (14)0.04785 (6)0.0270 (3)
H6A−0.10681.17570.02330.032*
C70.03299 (15)1.10322 (13)0.07865 (6)0.0249 (3)
H7A0.09911.17310.07470.030*
C8−0.33901 (18)1.09944 (18)−0.01185 (7)0.0375 (4)
H8A−0.34481.18260.00880.056*
H8B−0.42891.0823−0.02980.056*
H8C−0.26521.1067−0.03940.056*
C90.39771 (15)0.93998 (13)0.19354 (6)0.0227 (3)
C100.36095 (17)1.02511 (15)0.24320 (7)0.0313 (4)
H10A0.44681.04790.26290.047*
H10B0.29830.97520.26720.047*
H10C0.31431.10670.23120.047*
C110.46851 (17)0.81265 (15)0.21301 (7)0.0337 (4)
H11A0.55420.83510.23290.050*
H11B0.49200.75710.18160.050*
H11C0.40480.76400.23710.050*
C120.49651 (16)1.01588 (16)0.15543 (7)0.0328 (4)
H12A0.58241.03910.17510.049*
H12B0.45041.09720.14280.049*
H12C0.51990.95990.12410.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0257 (5)0.0146 (5)0.0380 (6)−0.0001 (4)−0.0074 (4)−0.0020 (4)
O20.0262 (6)0.0441 (7)0.0356 (6)−0.0021 (5)−0.0122 (5)0.0052 (5)
N10.0226 (6)0.0141 (5)0.0297 (6)−0.0008 (4)−0.0065 (5)−0.0017 (5)
C10.0211 (7)0.0177 (6)0.0201 (6)0.0008 (5)−0.0003 (5)0.0001 (5)
C20.0201 (7)0.0184 (6)0.0223 (6)0.0026 (5)−0.0026 (5)−0.0024 (5)
C30.0237 (7)0.0197 (6)0.0266 (7)0.0008 (5)−0.0012 (6)0.0018 (5)
C40.0226 (7)0.0253 (7)0.0315 (8)−0.0035 (6)−0.0006 (6)−0.0012 (6)
C50.0195 (7)0.0324 (8)0.0240 (7)0.0026 (6)−0.0019 (5)−0.0040 (6)
C60.0275 (8)0.0269 (7)0.0267 (8)0.0040 (6)−0.0023 (6)0.0056 (6)
C70.0241 (7)0.0201 (7)0.0307 (8)−0.0009 (5)−0.0029 (6)0.0026 (6)
C80.0318 (9)0.0506 (10)0.0301 (9)0.0057 (8)−0.0106 (7)0.0047 (7)
C90.0230 (7)0.0172 (6)0.0278 (7)0.0001 (5)−0.0058 (6)0.0009 (5)
C100.0346 (9)0.0283 (7)0.0310 (8)−0.0007 (6)−0.0095 (7)−0.0052 (6)
C110.0326 (9)0.0231 (7)0.0453 (10)0.0035 (6)−0.0177 (7)0.0017 (7)
C120.0209 (7)0.0365 (8)0.0409 (9)−0.0025 (6)−0.0036 (7)0.0071 (7)

Geometric parameters (Å, °)

O1—C11.2282 (16)C7—H7A0.9500
O2—C51.3741 (17)C8—H8A0.9800
O2—C81.4304 (19)C8—H8B0.9800
N1—C11.3542 (17)C8—H8C0.9800
N1—C21.4209 (17)C9—C111.5262 (19)
N1—H1A0.8800C9—C101.532 (2)
C1—C91.5362 (19)C9—C121.534 (2)
C2—C71.3866 (19)C10—H10A0.9800
C2—C31.3916 (19)C10—H10B0.9800
C3—C41.381 (2)C10—H10C0.9800
C3—H3A0.9500C11—H11A0.9800
C4—C51.391 (2)C11—H11B0.9800
C4—H4A0.9500C11—H11C0.9800
C5—C61.381 (2)C12—H12A0.9800
C6—C71.391 (2)C12—H12B0.9800
C6—H6A0.9500C12—H12C0.9800
C5—O2—C8116.59 (12)O2—C8—H8C109.5
C1—N1—C2126.08 (11)H8A—C8—H8C109.5
C1—N1—H1A117.0H8B—C8—H8C109.5
C2—N1—H1A117.0C11—C9—C10108.76 (12)
O1—C1—N1122.16 (13)C11—C9—C12109.69 (13)
O1—C1—C9122.60 (12)C10—C9—C12110.42 (12)
N1—C1—C9115.24 (11)C11—C9—C1108.99 (11)
C7—C2—C3119.32 (13)C10—C9—C1109.84 (12)
C7—C2—N1117.92 (12)C12—C9—C1109.12 (11)
C3—C2—N1122.71 (12)C9—C10—H10A109.5
C4—C3—C2119.79 (13)C9—C10—H10B109.5
C4—C3—H3A120.1H10A—C10—H10B109.5
C2—C3—H3A120.1C9—C10—H10C109.5
C3—C4—C5120.70 (13)H10A—C10—H10C109.5
C3—C4—H4A119.6H10B—C10—H10C109.5
C5—C4—H4A119.6C9—C11—H11A109.5
O2—C5—C6124.62 (13)C9—C11—H11B109.5
O2—C5—C4115.58 (13)H11A—C11—H11B109.5
C6—C5—C4119.80 (13)C9—C11—H11C109.5
C5—C6—C7119.50 (13)H11A—C11—H11C109.5
C5—C6—H6A120.3H11B—C11—H11C109.5
C7—C6—H6A120.3C9—C12—H12A109.5
C2—C7—C6120.88 (13)C9—C12—H12B109.5
C2—C7—H7A119.6H12A—C12—H12B109.5
C6—C7—H7A119.6C9—C12—H12C109.5
O2—C8—H8A109.5H12A—C12—H12C109.5
O2—C8—H8B109.5H12B—C12—H12C109.5
H8A—C8—H8B109.5
C2—N1—C1—O1−2.7 (2)O2—C5—C6—C7−178.91 (13)
C2—N1—C1—C9176.75 (12)C4—C5—C6—C71.2 (2)
C1—N1—C2—C7−145.49 (14)C3—C2—C7—C6−0.3 (2)
C1—N1—C2—C337.0 (2)N1—C2—C7—C6−177.94 (13)
C7—C2—C3—C40.7 (2)C5—C6—C7—C2−0.6 (2)
N1—C2—C3—C4178.23 (13)O1—C1—C9—C11−5.65 (19)
C2—C3—C4—C5−0.2 (2)N1—C1—C9—C11174.89 (13)
C8—O2—C5—C6−2.7 (2)O1—C1—C9—C10−124.71 (14)
C8—O2—C5—C4177.17 (13)N1—C1—C9—C1055.83 (16)
C3—C4—C5—O2179.31 (13)O1—C1—C9—C12114.12 (15)
C3—C4—C5—C6−0.8 (2)N1—C1—C9—C12−65.34 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.092.9382 (15)160
C3—H3A···O10.952.452.9063 (17)109

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2254).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem.41, 761–767. [PubMed]
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2329–o2330.
  • Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2327–o2328.
  • Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol.38, 267–277. [PubMed]
  • Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. [PMC free article] [PubMed]
  • Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography