PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1136.
Published online 2009 August 26. doi:  10.1107/S1600536809030475
PMCID: PMC2970141

Bis{μ-2-[1-(2-Pyridylmethyl­imino)eth­yl]phenolato}bis­[azido­copper(II)]

Abstract

The title compound, [Cu2(C14H13N2O)2(N3)2], was synthesized by the reaction of Cu(NO3)2·3H2O with the Schiff base 2-[1-(2-pyridylmethyl­imino)eth­yl]phenol (HL) in methanol–water solution, adding NaN3 as the bridging ligand. The asymmetric unit contains one half-mol­ecule, the other half being generated by the inversion center. Each CuII atom shows a slightly distorted trigonal-pyramidal geometry formed by two N atoms and one O atom from one Schiff base ligand, by another O atom of a second Schiff base ligand and by an azide N atom. The crystal structure is stabilized by intermolecular C—H(...)N hydrogen bonds.

Related literature

For the potential applications in catalysis and enzymatic reactions, magnetism and mol­ecular architecture of transition metal compounds containing Schiff base ligands, see: Li & Zhang (2004 [triangle]); You & Zhu (2004 [triangle]). For the synthesis, see: Pointeau et al. (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1136-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C14H13N2O)2(N3)2]
  • M r = 661.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1136-efi1.jpg
  • a = 10.1066 (12) Å
  • b = 8.0545 (10) Å
  • c = 16.7027 (18) Å
  • β = 96.251 (1)°
  • V = 1351.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.62 mm−1
  • T = 298 K
  • 0.20 × 0.12 × 0.09 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.737, T max = 0.868
  • 6641 measured reflections
  • 2379 independent reflections
  • 1720 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.062
  • S = 1.02
  • 2379 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030475/at2842sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030475/at2842Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Transition metal compounds containing Schiff base ligands have been of great interest since many years. These compounds play an important role in the development of coordination chemistry related to their potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture (You & Zhu, 2004; Li & Zhang, 2004). We have focused on the synthesis of Schiff base complexes which is formed by 2-(pyridin-2-ylethyliminomethyl)phenol (HL1) and some metal salts. To enrich our studies on schiff bases, we used HL (Pointeau, et al., 1986) instead of HL1 and gained the title compound. So, we reported this dinuclear copper(II) complex here.

The structure analyses show that complex crystallizes in monoclinic space group P21/n. The asymmetric unit contains only half of the unique molecule, and the other half is related by the inversion center (Fig.1). The molecule of the title compound is composed of two CuII atoms, two schiff base ligand 2-[1-(pyridin-2-ylmethylimino)-ethyl]-phenol and two azidos. Each CuII atom shows a slightly distorted trigonal-bipyramidal geometry formed by two N atoms and one O atom from one schiff base ligand (You & Zhu, 2004), the another O atom of the second schiff base, together with another N atom from azido.

In the structure, there are intra and intermolecular C—H···N hydrogen bond interactions (Table 2).

Experimental

The title compound was synthesized by Cu(NO3)2.3H2O, schiff base ligand 2-[1-(pyridin-2'-ylmethylimino)-ethyl]-phenol and sodium azide. All chemicals used (reagent grade) were commercially available. 2'-hydroxyacetophenone(0.136 g, 1 mmol) was dissolved in ethanol (5 mL) and ethanol solution (5 ml) containing 2-aminoethylpyri dine (0.108 g, 1 mmol) was added slowly with stirring. The resulting yellow solution was continuously stirred for about 30 min. at room temperature, and then Cu(NO3)2.3H2O (0.241 g, 1 mmol) and sodium azide (0.13 g, 2 mmol) in aqueous solution (5 ml) was added with stirring homogeneously. Brown crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement

H atoms bound to carbon were placed in geometrical positions and refined using a riding model, with C—H = 0.93-0.97Å and Uiso(H) =1.2 or 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cu2(C14H13N2O)2(N3)2]F(000) = 676
Mr = 661.67Dx = 1.626 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13380 reflections
a = 10.1066 (12) Åθ = 3.0–27.6°
b = 8.0545 (10) ŵ = 1.62 mm1
c = 16.7027 (18) ÅT = 298 K
β = 96.251 (1)°Prism, dark green
V = 1351.6 (3) Å30.20 × 0.12 × 0.09 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer2379 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.3°
Thin–slice ω scansh = −12→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −9→9
Tmin = 0.737, Tmax = 0.868l = −19→19
6641 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0192P)2] where P = (Fo2 + 2Fc2)/3
2379 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00744 (4)0.69734 (4)0.00638 (2)0.03343 (13)
N1−0.0002 (2)0.6887 (3)0.12413 (13)0.0349 (6)
N2−0.1427 (2)0.8584 (3)0.01237 (14)0.0324 (6)
N30.0263 (3)0.7564 (3)−0.10588 (15)0.0448 (7)
N40.1145 (3)0.7080 (3)−0.14292 (14)0.0391 (7)
N50.1975 (3)0.6669 (4)−0.18111 (16)0.0579 (9)
O10.14375 (17)0.5289 (2)0.01510 (10)0.0333 (5)
C10.0637 (3)0.6042 (5)0.26461 (17)0.0594 (10)
H1A0.10240.69320.29750.089*
H1B0.10290.50080.28340.089*
H1C−0.03050.60090.26780.089*
C20.0898 (3)0.6322 (4)0.17764 (17)0.0374 (8)
C30.2216 (3)0.5861 (4)0.15511 (17)0.0359 (8)
C40.2396 (3)0.5298 (4)0.07618 (17)0.0347 (8)
C50.3666 (3)0.4732 (4)0.06349 (19)0.0417 (8)
H50.37880.42580.01410.050*
C60.4741 (3)0.4850 (4)0.1214 (2)0.0530 (9)
H60.55730.44770.11040.064*
C70.4584 (4)0.5521 (4)0.1957 (2)0.0583 (11)
H70.53140.56610.23400.070*
C80.3338 (4)0.5977 (4)0.21236 (19)0.0482 (9)
H80.32300.63790.26340.058*
C9−0.1311 (3)0.7385 (4)0.14550 (18)0.0443 (9)
H9A−0.12170.79140.19800.053*
H9B−0.18710.64130.14830.053*
C10−0.1947 (3)0.8571 (4)0.08326 (18)0.0366 (8)
C11−0.2990 (3)0.9584 (4)0.0981 (2)0.0496 (10)
H11−0.33320.95480.14750.060*
C12−0.3517 (3)1.0650 (4)0.0388 (2)0.0528 (10)
H12−0.42171.13500.04780.063*
C13−0.3000 (3)1.0671 (4)−0.0340 (2)0.0473 (9)
H13−0.33521.1373−0.07520.057*
C14−0.1951 (3)0.9631 (4)−0.04483 (19)0.0421 (8)
H14−0.15930.9658−0.09380.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0379 (2)0.0380 (2)0.0248 (2)0.0016 (2)0.00541 (15)−0.00083 (19)
N10.0380 (16)0.0401 (16)0.0275 (14)−0.0004 (13)0.0078 (11)−0.0019 (13)
N20.0352 (16)0.0305 (15)0.0317 (15)−0.0032 (11)0.0049 (12)−0.0038 (11)
N30.0442 (18)0.061 (2)0.0314 (15)0.0104 (14)0.0125 (13)0.0084 (13)
N40.0471 (19)0.0414 (17)0.0282 (15)−0.0024 (15)0.0017 (13)0.0035 (13)
N50.063 (2)0.066 (2)0.0480 (18)0.0109 (17)0.0234 (16)−0.0012 (16)
O10.0343 (12)0.0404 (14)0.0245 (11)0.0027 (10)0.0009 (9)−0.0022 (9)
C10.075 (3)0.076 (3)0.029 (2)0.009 (2)0.0094 (17)0.0074 (18)
C20.053 (2)0.0332 (19)0.0261 (18)−0.0024 (16)0.0044 (16)−0.0019 (14)
C30.042 (2)0.0366 (19)0.0282 (18)−0.0008 (16)−0.0008 (15)0.0049 (14)
C40.0376 (19)0.032 (2)0.0349 (19)−0.0034 (14)0.0051 (15)0.0039 (14)
C50.039 (2)0.047 (2)0.0389 (19)0.0029 (17)0.0041 (15)0.0007 (16)
C60.039 (2)0.060 (2)0.058 (2)0.0060 (19)−0.0008 (17)0.006 (2)
C70.047 (2)0.069 (3)0.053 (3)−0.0019 (19)−0.0188 (18)0.004 (2)
C80.061 (3)0.049 (2)0.033 (2)−0.0034 (19)−0.0043 (17)0.0018 (16)
C90.049 (2)0.053 (2)0.0342 (19)0.0045 (17)0.0166 (16)0.0016 (16)
C100.038 (2)0.035 (2)0.037 (2)−0.0054 (15)0.0083 (15)−0.0065 (15)
C110.048 (2)0.051 (3)0.051 (2)0.0052 (18)0.0162 (18)−0.0071 (18)
C120.042 (2)0.052 (2)0.065 (3)0.0054 (18)0.0059 (19)−0.016 (2)
C130.044 (2)0.039 (2)0.056 (2)−0.0018 (17)−0.0072 (17)0.0015 (17)
C140.046 (2)0.042 (2)0.038 (2)−0.0022 (16)0.0022 (15)−0.0026 (16)

Geometric parameters (Å, °)

Cu1—O11.9278 (18)C4—C51.399 (4)
Cu1—N31.964 (2)C5—C61.377 (4)
Cu1—N11.978 (2)C5—H50.9300
Cu1—N22.007 (2)C6—C71.379 (4)
Cu1—O1i2.3799 (19)C6—H60.9300
N1—C21.287 (4)C7—C81.369 (4)
N1—C91.463 (3)C7—H70.9300
N2—C141.340 (4)C8—H80.9300
N2—C101.347 (3)C9—C101.503 (4)
N3—N41.204 (3)C9—H9A0.9700
N4—N51.156 (3)C9—H9B0.9700
O1—C41.328 (3)C10—C111.377 (4)
O1—Cu1i2.3799 (19)C11—C121.373 (4)
C1—C21.521 (4)C11—H110.9300
C1—H1A0.9600C12—C131.375 (4)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—C141.378 (4)
C2—C31.471 (4)C13—H130.9300
C3—C81.404 (4)C14—H140.9300
C3—C41.424 (4)
O1—Cu1—N395.73 (9)C5—C4—C3117.1 (3)
O1—Cu1—N190.30 (9)C6—C5—C4122.5 (3)
N3—Cu1—N1167.49 (11)C6—C5—H5118.7
O1—Cu1—N2171.51 (8)C4—C5—H5118.7
N3—Cu1—N292.50 (10)C5—C6—C7120.0 (3)
N1—Cu1—N282.03 (10)C5—C6—H6120.0
O1—Cu1—O1i85.08 (7)C7—C6—H6120.0
N3—Cu1—O1i99.74 (9)C8—C7—C6119.1 (3)
N1—Cu1—O1i91.66 (8)C8—C7—H7120.4
N2—Cu1—O1i91.47 (8)C6—C7—H7120.4
C2—N1—C9121.1 (2)C7—C8—C3122.4 (3)
C2—N1—Cu1127.0 (2)C7—C8—H8118.8
C9—N1—Cu1111.55 (18)C3—C8—H8118.8
C14—N2—C10118.1 (3)N1—C9—C10109.6 (2)
C14—N2—Cu1127.9 (2)N1—C9—H9A109.8
C10—N2—Cu1114.1 (2)C10—C9—H9A109.8
N4—N3—Cu1124.5 (2)N1—C9—H9B109.8
N5—N4—N3176.9 (3)C10—C9—H9B109.8
C4—O1—Cu1120.63 (17)H9A—C9—H9B108.2
C4—O1—Cu1i121.52 (17)N2—C10—C11122.2 (3)
Cu1—O1—Cu1i94.91 (7)N2—C10—C9115.8 (3)
C2—C1—H1A109.5C11—C10—C9122.0 (3)
C2—C1—H1B109.5C12—C11—C10119.1 (3)
H1A—C1—H1B109.5C12—C11—H11120.5
C2—C1—H1C109.5C10—C11—H11120.5
H1A—C1—H1C109.5C11—C12—C13119.4 (3)
H1B—C1—H1C109.5C11—C12—H12120.3
N1—C2—C3120.2 (3)C13—C12—H12120.3
N1—C2—C1122.2 (3)C12—C13—C14118.7 (3)
C3—C2—C1117.6 (3)C12—C13—H13120.7
C8—C3—C4118.5 (3)C14—C13—H13120.7
C8—C3—C2119.7 (3)N2—C14—C13122.6 (3)
C4—C3—C2121.9 (3)N2—C14—H14118.7
O1—C4—C5119.1 (3)C13—C14—H14118.7
O1—C4—C3123.8 (3)
O1—Cu1—N1—C220.2 (3)C1—C2—C3—C4149.0 (3)
N3—Cu1—N1—C2−98.8 (6)Cu1—O1—C4—C5−146.9 (2)
N2—Cu1—N1—C2−163.5 (3)Cu1i—O1—C4—C594.4 (3)
O1i—Cu1—N1—C2105.2 (3)Cu1—O1—C4—C332.9 (4)
O1—Cu1—N1—C9−153.2 (2)Cu1i—O1—C4—C3−85.7 (3)
N3—Cu1—N1—C987.8 (5)C8—C3—C4—O1−173.3 (3)
N2—Cu1—N1—C923.2 (2)C2—C3—C4—O16.6 (5)
O1i—Cu1—N1—C9−68.1 (2)C8—C3—C4—C56.5 (4)
N3—Cu1—N2—C14−2.0 (3)C2—C3—C4—C5−173.6 (3)
N1—Cu1—N2—C14166.7 (3)O1—C4—C5—C6173.6 (3)
O1i—Cu1—N2—C14−101.8 (2)C3—C4—C5—C6−6.2 (5)
N3—Cu1—N2—C10177.8 (2)C4—C5—C6—C71.1 (5)
N1—Cu1—N2—C10−13.5 (2)C5—C6—C7—C83.6 (5)
O1i—Cu1—N2—C1078.0 (2)C6—C7—C8—C3−3.1 (5)
O1—Cu1—N3—N4−9.5 (3)C4—C3—C8—C7−2.1 (5)
N1—Cu1—N3—N4109.0 (5)C2—C3—C8—C7178.0 (3)
N2—Cu1—N3—N4172.6 (3)C2—N1—C9—C10158.1 (3)
O1i—Cu1—N3—N4−95.5 (3)Cu1—N1—C9—C10−28.1 (3)
N3—Cu1—O1—C4129.3 (2)C14—N2—C10—C110.3 (4)
N1—Cu1—O1—C4−39.7 (2)Cu1—N2—C10—C11−179.6 (2)
O1i—Cu1—O1—C4−131.4 (2)C14—N2—C10—C9−179.4 (3)
N3—Cu1—O1—Cu1i−99.33 (9)Cu1—N2—C10—C90.8 (3)
N1—Cu1—O1—Cu1i91.64 (8)N1—C9—C10—N217.9 (4)
O1i—Cu1—O1—Cu1i0.0N1—C9—C10—C11−161.8 (3)
C9—N1—C2—C3−178.8 (3)N2—C10—C11—C12−0.2 (5)
Cu1—N1—C2—C38.5 (4)C9—C10—C11—C12179.4 (3)
C9—N1—C2—C13.6 (5)C10—C11—C12—C130.5 (5)
Cu1—N1—C2—C1−169.1 (2)C11—C12—C13—C14−0.9 (5)
N1—C2—C3—C8151.1 (3)C10—N2—C14—C13−0.7 (4)
C1—C2—C3—C8−31.2 (4)Cu1—N2—C14—C13179.1 (2)
N1—C2—C3—C4−28.7 (4)C12—C13—C14—N21.0 (5)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9B···N5i0.972.553.399 (5)147
C14—H14···N30.932.553.052 (4)114

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2842).

References

  • Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.
  • Pointeau, P., Patin, H., Mousser, A. & le Marouile, J.-Y. (1986). J. Organomet. Chem.312, 263–276.
  • Rigaku. (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • You, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem.630, 2754–2760.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography