PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2099–o2100.
Published online 2009 August 8. doi:  10.1107/S1600536809030761
PMCID: PMC2970140

1-Ethyl-2-tosyl-4,4,6-trimethyl-2,3,3a,4-tetra­hydro-1H-pyrrolo[3,4-c]pyrano[6,5-b]quinoline-11(6H)-one monohydrate

Abstract

In the title compound, C26H30N2O4S·H2O, the pyrrolidine and dihydro­pyran rings adopt envelope conformations and they are cis-fused. The sulfonyl group has a distorted tetra­hedral geometry. In the crystal structure, the mol­ecules are linked into a ribbon-like structure along the a axis by O/C—H(...)O hydrogen bonds involving water mol­ecules and C—H(...)π inter­actions involving the sulfonyl-bound phenyl ring. Adjacent ribbons are cross-linked via C—H(...)O hydrogen bonds involving a sulfonyl O atom and C—H(...)π inter­actions involving the pyridinone ring.

Related literature

For the biological activity of pyran­oquinolinones, see: Duraipandiyan & Ignacimuthu (2009 [triangle]); Magedov et al. (2008 [triangle]); Marco-Contelles et al. (2006 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]). For asymmetry parameters, see: Duax et al. (1976 [triangle]). For a related structure, see: Chinnakali et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2099-scheme1.jpg

Experimental

Crystal data

  • C26H30N2O4S·H2O
  • M r = 484.60
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2099-efi1.jpg
  • a = 9.6964 (2) Å
  • b = 10.2315 (3) Å
  • c = 13.5500 (3) Å
  • α = 92.143 (1)°
  • β = 93.142 (1)°
  • γ = 115.703 (1)°
  • V = 1206.65 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 100 K
  • 0.58 × 0.32 × 0.32 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.842, T max = 0.947
  • 32886 measured reflections
  • 10512 independent reflections
  • 9074 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.108
  • S = 1.04
  • 10512 reflections
  • 320 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809030761/bq2154sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030761/bq2154Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Compounds containg pyranoquinolone motifs exhibit antiproliferative and antitubulin activities (Magedov et al., 2008) and antibacterial and antifungal activities (Duraipandiyan & Ignacimuthu, 2009). Some of the pyranoquinoline derivatives have been found to block acetylcholinesterase and cell calcium signals, and cause neuroprotection against calcium overload and free radicals (Marco-Contelles et al., 2006). We report here the crystal structure of the title compound, a pyranoquinolinone derivative.

Bond lengths and angles in the title molecule (Fig. 1) are comparable to those observed in a related compound, trans-1-ethyl-4,4,10-trimethyl-2-tosyl- 1,2,3,3a,4,11b-hexahydro-11H-pyrrolo[3,4-c]pyrano[5,6-c]quinolin-11-one (Chinnakali et al., 2007). The pyrrolidine ring adopts an envelope conformation with C2, the envelope flap, lying 0.627 (1) Å from the plane defined by atoms N1, C1, C3 and C4. The asymmetry parameter (Duax et al., 1976) ΔCs[C2] is 5.85 (7)°, and puckering parameters (Cremer & Pople, 1975) q2 and [var phi] are 0.4147 (8) Å and 79.52 (11)°, respectively. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The dihydropyran ring also adopts an envelope conformation, with atom C2 0.694 (1) Å out of the plane formed by the rest of the atoms of the ring. The smallest displacement asymmetry parameter ΔCs[C2] is 5.21 (7)°. The pyrrolidine ring is trans-fused to the dihydropyran ring. The quinoline ring system is planar (r.m.s. deviation 0.030 Å) with atoms O4 and C26 deviating from the mean plane by 0.043 (1) and 0.083 (1) Å, respectively. The sulfonyl group has a distorted tetrahedral geometry, with the O1—S1—O2 [120.48 (4)°] angle deviating significantly from ideal tetrahedral value. Intramolecular C—H···O hydrogen bonds generate S(6) and S(7) ring motifs.

In the crystal structure, centrosymmetrically related molecules are linked into a dimer by a pair of weak C—H···π interactions (Table 1) involving C19—H19 group and C18—C13 benzene ring (centroid Cg1). The dimers are linked into a ribbon like structure along the a axis (Fig. 2) by O—H···O and C—H···O hydrogen bonds involving the water molecules. The adjacent ribbons are cross-linked via C—H···O hydrogen bonds involving a sulfonyl O atom and C—H···π interactions involving the pyridinone ring.

Experimental

To a solution of 4-hydroxy-1-methylquinoline (1 mmol) in toluene (20 ml), the corresponding 2-(N-prenyl-N-tosylamino)acetaldehyde (1 mmol) and a catalytic amount of the base ethylenediamine-N,N'-diacetate (EDDA, 1 mmol) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the residue was subjected to column chromatography using a hexane-ethyl acetate (8:2 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement

Water H atoms were located in a difference map and refined freely. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5(methyl) Ueq(C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
Fig. 2.
View of a hydrogen-bonded ribbon in the title compound. Dashed and dotted lines indicate O/C—H···O and C—H···π interactions, respectively. For the sake of clarity, H atoms not involved ...

Crystal data

C26H30N2O4S·H2OZ = 2
Mr = 484.60F(000) = 516
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6964 (2) ÅCell parameters from 9831 reflections
b = 10.2315 (3) Åθ = 2.4–40.2°
c = 13.5500 (3) ŵ = 0.17 mm1
α = 92.143 (1)°T = 100 K
β = 93.142 (1)°Block, colourless
γ = 115.703 (1)°0.58 × 0.32 × 0.32 mm
V = 1206.65 (5) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer10512 independent reflections
Radiation source: fine-focus sealed tube9074 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 35.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −14→15
Tmin = 0.842, Tmax = 0.947k = −16→16
32886 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2725P] where P = (Fo2 + 2Fc2)/3
10512 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.10550 (2)0.20102 (2)0.101937 (13)0.01815 (5)
O1−0.14482 (8)0.10439 (8)0.01424 (5)0.02588 (13)
O2−0.21397 (7)0.24814 (8)0.13802 (5)0.02463 (12)
O30.36172 (7)0.10968 (7)0.36629 (4)0.02095 (11)
O40.05379 (7)0.31969 (7)0.50127 (4)0.02048 (11)
N1−0.06215 (7)0.11918 (7)0.19027 (5)0.01627 (11)
N20.44953 (7)0.26770 (7)0.49833 (5)0.01623 (11)
C10.03179 (9)0.04091 (8)0.17054 (6)0.01816 (12)
H1A0.07280.06000.10620.022*
H1B−0.0267−0.06310.17440.022*
C20.15833 (8)0.10586 (8)0.25395 (5)0.01455 (11)
H20.22760.20400.23700.017*
C30.07378 (8)0.12244 (7)0.34232 (5)0.01382 (11)
H30.01140.02540.36420.017*
C4−0.03588 (8)0.18134 (8)0.29580 (5)0.01449 (11)
H40.01660.28770.29760.017*
C50.25658 (8)0.02781 (8)0.27888 (5)0.01649 (12)
C60.32986 (8)0.19511 (8)0.42907 (5)0.01509 (11)
C70.19301 (8)0.20919 (8)0.42556 (5)0.01399 (11)
C80.06168 (9)0.35827 (9)0.08100 (5)0.01895 (13)
C90.09398 (10)0.48997 (9)0.13299 (6)0.02292 (14)
H90.02760.49570.17810.027*
C100.22655 (11)0.61223 (10)0.11634 (7)0.02546 (16)
H100.24820.70000.15090.031*
C110.32828 (10)0.60689 (10)0.04910 (6)0.02372 (15)
C120.29358 (11)0.47384 (11)−0.00188 (6)0.02569 (16)
H120.36010.4681−0.04690.031*
C130.16132 (10)0.34970 (10)0.01340 (6)0.02375 (15)
H130.13960.2618−0.02110.028*
C140.47103 (12)0.74153 (12)0.03266 (8)0.03231 (19)
H14A0.44360.81790.01560.048*
H14B0.52210.7210−0.02030.048*
H14C0.53850.77160.09220.048*
C150.36409 (9)0.03800 (9)0.19901 (6)0.02084 (14)
H15A0.42360.13820.18670.031*
H15B0.3051−0.01430.13920.031*
H15C0.4315−0.00340.22070.031*
C160.16794 (11)−0.12767 (9)0.30705 (7)0.02468 (15)
H16A0.1110−0.12860.36300.037*
H16B0.2385−0.16780.32380.037*
H16C0.0984−0.18490.25210.037*
C170.43494 (8)0.35304 (8)0.57565 (5)0.01535 (11)
C180.55160 (9)0.41818 (8)0.65335 (6)0.01901 (13)
H180.64130.40620.65290.023*
C190.53158 (10)0.49978 (9)0.73000 (6)0.02148 (14)
H190.60810.54150.78140.026*
C200.39817 (10)0.52082 (9)0.73172 (6)0.02210 (14)
H200.38710.57770.78300.027*
C210.28324 (9)0.45606 (8)0.65626 (6)0.01910 (13)
H210.19410.46900.65740.023*
C220.29908 (8)0.37079 (8)0.57767 (5)0.01509 (11)
C230.17397 (8)0.30031 (8)0.50003 (5)0.01469 (11)
C24−0.19016 (9)0.13330 (9)0.34164 (6)0.01990 (13)
H24A−0.17060.15840.41240.024*
H24B−0.24270.18720.31420.024*
C25−0.29541 (11)−0.02827 (11)0.32456 (9)0.0329 (2)
H25A−0.3893−0.05010.35510.049*
H25B−0.2457−0.08280.35310.049*
H25C−0.3177−0.05400.25470.049*
C260.59115 (9)0.24915 (10)0.49227 (6)0.02184 (14)
H26A0.60640.23470.42410.033*
H26B0.58250.16610.52700.033*
H26C0.67690.33450.52180.033*
O1W0.07659 (8)0.54423 (7)0.37852 (5)0.02352 (12)
H1W10.039 (2)0.5967 (19)0.4179 (14)0.057 (5)*
H2W10.0587 (19)0.4646 (19)0.4169 (13)0.050 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01901 (8)0.02528 (9)0.01322 (8)0.01303 (7)−0.00226 (6)−0.00017 (6)
O10.0270 (3)0.0342 (3)0.0153 (2)0.0138 (3)−0.0065 (2)−0.0055 (2)
O20.0232 (3)0.0363 (3)0.0231 (3)0.0210 (3)0.0015 (2)0.0048 (2)
O30.0222 (2)0.0308 (3)0.0164 (2)0.0188 (2)−0.00380 (19)−0.0072 (2)
O40.0218 (2)0.0277 (3)0.0182 (2)0.0173 (2)−0.00107 (19)−0.0039 (2)
N10.0196 (3)0.0198 (3)0.0127 (2)0.0121 (2)−0.00137 (19)−0.00144 (19)
N20.0152 (2)0.0210 (3)0.0139 (2)0.0096 (2)−0.00049 (19)−0.0008 (2)
C10.0211 (3)0.0210 (3)0.0157 (3)0.0133 (3)−0.0028 (2)−0.0045 (2)
C20.0162 (3)0.0165 (3)0.0131 (3)0.0094 (2)0.0002 (2)−0.0011 (2)
C30.0146 (3)0.0156 (3)0.0129 (3)0.0084 (2)0.0002 (2)−0.0003 (2)
C40.0159 (3)0.0169 (3)0.0125 (3)0.0092 (2)0.0000 (2)−0.0004 (2)
C50.0183 (3)0.0195 (3)0.0145 (3)0.0114 (2)−0.0008 (2)−0.0026 (2)
C60.0164 (3)0.0187 (3)0.0125 (3)0.0100 (2)0.0004 (2)0.0000 (2)
C70.0153 (3)0.0166 (3)0.0121 (2)0.0091 (2)0.0004 (2)0.0000 (2)
C80.0236 (3)0.0244 (3)0.0131 (3)0.0144 (3)0.0010 (2)0.0019 (2)
C90.0298 (4)0.0248 (3)0.0205 (3)0.0175 (3)0.0048 (3)0.0022 (3)
C100.0327 (4)0.0237 (4)0.0243 (4)0.0162 (3)0.0032 (3)0.0020 (3)
C110.0262 (4)0.0277 (4)0.0190 (3)0.0132 (3)0.0007 (3)0.0058 (3)
C120.0275 (4)0.0329 (4)0.0183 (3)0.0143 (3)0.0049 (3)0.0017 (3)
C130.0275 (4)0.0293 (4)0.0166 (3)0.0145 (3)0.0037 (3)−0.0018 (3)
C140.0295 (4)0.0321 (4)0.0327 (5)0.0105 (4)0.0027 (4)0.0084 (4)
C150.0212 (3)0.0283 (4)0.0173 (3)0.0152 (3)0.0013 (2)−0.0035 (3)
C160.0272 (4)0.0210 (3)0.0313 (4)0.0152 (3)0.0039 (3)0.0051 (3)
C170.0167 (3)0.0160 (3)0.0129 (3)0.0068 (2)0.0006 (2)0.0014 (2)
C180.0179 (3)0.0199 (3)0.0165 (3)0.0062 (2)−0.0020 (2)0.0009 (2)
C190.0241 (3)0.0198 (3)0.0163 (3)0.0064 (3)−0.0033 (3)−0.0011 (2)
C200.0283 (4)0.0217 (3)0.0154 (3)0.0107 (3)−0.0014 (3)−0.0031 (2)
C210.0235 (3)0.0200 (3)0.0150 (3)0.0109 (3)0.0003 (2)−0.0019 (2)
C220.0179 (3)0.0159 (3)0.0122 (3)0.0082 (2)0.0004 (2)0.0002 (2)
C230.0178 (3)0.0164 (3)0.0121 (3)0.0096 (2)0.0009 (2)0.0007 (2)
C240.0169 (3)0.0283 (4)0.0175 (3)0.0126 (3)0.0023 (2)0.0020 (3)
C250.0183 (3)0.0290 (4)0.0507 (6)0.0084 (3)0.0073 (4)0.0134 (4)
C260.0175 (3)0.0314 (4)0.0204 (3)0.0147 (3)−0.0009 (2)−0.0011 (3)
O1W0.0259 (3)0.0248 (3)0.0238 (3)0.0147 (2)0.0038 (2)−0.0016 (2)

Geometric parameters (Å, °)

S1—O21.4341 (6)C12—C131.3916 (13)
S1—O11.4389 (6)C12—H120.93
S1—N11.6234 (6)C13—H130.93
S1—C81.7661 (8)C14—H14A0.96
O3—C61.3381 (9)C14—H14B0.96
O3—C51.4821 (9)C14—H14C0.96
O4—C231.2648 (9)C15—H15A0.96
N1—C11.4784 (9)C15—H15B0.96
N1—C41.5052 (9)C15—H15C0.96
N2—C61.3637 (9)C16—H16A0.96
N2—C171.3911 (9)C16—H16B0.96
N2—C261.4716 (10)C16—H16C0.96
C1—C21.5196 (10)C17—C221.4071 (10)
C1—H1A0.97C17—C181.4126 (10)
C1—H1B0.97C18—C191.3825 (11)
C2—C51.5179 (10)C18—H180.93
C2—C31.5321 (10)C19—C201.4017 (12)
C2—H20.98C19—H190.93
C3—C71.5128 (10)C20—C211.3822 (11)
C3—C41.5499 (10)C20—H200.93
C3—H30.98C21—C221.4084 (10)
C4—C241.5337 (10)C21—H210.93
C4—H40.98C22—C231.4640 (10)
C5—C151.5187 (11)C24—C251.5198 (13)
C5—C161.5201 (11)C24—H24A0.97
C6—C71.3940 (10)C24—H24B0.97
C7—C231.4216 (10)C25—H25A0.96
C8—C131.3944 (11)C25—H25B0.96
C8—C91.3960 (11)C25—H25C0.96
C9—C101.3878 (13)C26—H26A0.96
C9—H90.93C26—H26B0.96
C10—C111.3956 (13)C26—H26C0.96
C10—H100.93O1W—H1W10.933 (18)
C11—C121.3965 (13)O1W—H2W10.940 (18)
C11—C141.5053 (13)
O2—S1—O1120.48 (4)C11—C12—H12119.4
O2—S1—N1106.96 (4)C12—C13—C8119.38 (8)
O1—S1—N1106.25 (4)C12—C13—H13120.3
O2—S1—C8107.39 (4)C8—C13—H13120.3
O1—S1—C8107.16 (4)C11—C14—H14A109.5
N1—S1—C8108.10 (4)C11—C14—H14B109.5
C6—O3—C5122.23 (6)H14A—C14—H14B109.5
C1—N1—C4112.20 (5)C11—C14—H14C109.5
C1—N1—S1119.56 (5)H14A—C14—H14C109.5
C4—N1—S1120.20 (5)H14B—C14—H14C109.5
C6—N2—C17120.21 (6)C5—C15—H15A109.5
C6—N2—C26118.97 (6)C5—C15—H15B109.5
C17—N2—C26120.77 (6)H15A—C15—H15B109.5
N1—C1—C2101.53 (5)C5—C15—H15C109.5
N1—C1—H1A111.5H15A—C15—H15C109.5
C2—C1—H1A111.5H15B—C15—H15C109.5
N1—C1—H1B111.5C5—C16—H16A109.5
C2—C1—H1B111.5C5—C16—H16B109.5
H1A—C1—H1B109.3H16A—C16—H16B109.5
C5—C2—C1118.88 (6)C5—C16—H16C109.5
C5—C2—C3112.23 (6)H16A—C16—H16C109.5
C1—C2—C3103.40 (6)H16B—C16—H16C109.5
C5—C2—H2107.2N2—C17—C22119.09 (6)
C1—C2—H2107.2N2—C17—C18121.27 (7)
C3—C2—H2107.2C22—C17—C18119.61 (7)
C7—C3—C2107.88 (5)C19—C18—C17119.61 (7)
C7—C3—C4120.70 (6)C19—C18—H18120.2
C2—C3—C4102.90 (5)C17—C18—H18120.2
C7—C3—H3108.2C18—C19—C20121.29 (7)
C2—C3—H3108.2C18—C19—H19119.4
C4—C3—H3108.2C20—C19—H19119.4
N1—C4—C24109.79 (6)C21—C20—C19119.20 (7)
N1—C4—C3102.05 (5)C21—C20—H20120.4
C24—C4—C3115.58 (6)C19—C20—H20120.4
N1—C4—H4109.7C20—C21—C22120.98 (7)
C24—C4—H4109.7C20—C21—H21119.5
C3—C4—H4109.7C22—C21—H21119.5
O3—C5—C2106.88 (6)C17—C22—C21119.29 (7)
O3—C5—C15103.73 (6)C17—C22—C23120.83 (6)
C2—C5—C15112.07 (6)C21—C22—C23119.88 (7)
O3—C5—C16106.72 (6)O4—C23—C7122.29 (7)
C2—C5—C16114.79 (6)O4—C23—C22120.33 (6)
C15—C5—C16111.75 (6)C7—C23—C22117.37 (6)
O3—C6—N2111.07 (6)C25—C24—C4114.19 (7)
O3—C6—C7125.22 (6)C25—C24—H24A108.7
N2—C6—C7123.71 (6)C4—C24—H24A108.7
C6—C7—C23118.59 (6)C25—C24—H24B108.7
C6—C7—C3116.49 (6)C4—C24—H24B108.7
C23—C7—C3124.90 (6)H24A—C24—H24B107.6
C13—C8—C9120.45 (8)C24—C25—H25A109.5
C13—C8—S1119.77 (6)C24—C25—H25B109.5
C9—C8—S1119.77 (6)H25A—C25—H25B109.5
C10—C9—C8119.05 (8)C24—C25—H25C109.5
C10—C9—H9120.5H25A—C25—H25C109.5
C8—C9—H9120.5H25B—C25—H25C109.5
C9—C10—C11121.74 (8)N2—C26—H26A109.5
C9—C10—H10119.1N2—C26—H26B109.5
C11—C10—H10119.1H26A—C26—H26B109.5
C10—C11—C12118.13 (8)N2—C26—H26C109.5
C10—C11—C14120.43 (9)H26A—C26—H26C109.5
C12—C11—C14121.44 (8)H26B—C26—H26C109.5
C13—C12—C11121.24 (8)H1W1—O1W—H2W1100.8 (14)
C13—C12—H12119.4
O2—S1—N1—C1171.79 (6)C2—C3—C7—C23151.18 (7)
O1—S1—N1—C141.91 (7)C4—C3—C7—C2333.50 (10)
C8—S1—N1—C1−72.84 (6)O2—S1—C8—C13−155.91 (7)
O2—S1—N1—C4−41.83 (7)O1—S1—C8—C13−25.14 (8)
O1—S1—N1—C4−171.71 (6)N1—S1—C8—C1389.01 (7)
C8—S1—N1—C473.54 (6)O2—S1—C8—C924.75 (8)
C4—N1—C1—C2−20.95 (8)O1—S1—C8—C9155.53 (7)
S1—N1—C1—C2127.93 (6)N1—S1—C8—C9−90.33 (7)
N1—C1—C2—C5163.47 (6)C13—C8—C9—C100.08 (12)
N1—C1—C2—C338.34 (7)S1—C8—C9—C10179.42 (7)
C5—C2—C3—C759.85 (7)C8—C9—C10—C11−0.04 (13)
C1—C2—C3—C7−170.83 (6)C9—C10—C11—C12−0.07 (13)
C5—C2—C3—C4−171.52 (6)C9—C10—C11—C14179.94 (8)
C1—C2—C3—C4−42.20 (7)C10—C11—C12—C130.14 (13)
C1—N1—C4—C24−127.76 (7)C14—C11—C12—C13−179.87 (8)
S1—N1—C4—C2483.59 (7)C11—C12—C13—C8−0.10 (13)
C1—N1—C4—C3−4.66 (8)C9—C8—C13—C12−0.02 (13)
S1—N1—C4—C3−153.32 (5)S1—C8—C13—C12−179.35 (7)
C7—C3—C4—N1148.43 (6)C6—N2—C17—C22−4.08 (10)
C2—C3—C4—N128.27 (7)C26—N2—C17—C22178.58 (7)
C7—C3—C4—C24−92.49 (8)C6—N2—C17—C18173.96 (7)
C2—C3—C4—C24147.35 (6)C26—N2—C17—C18−3.38 (11)
C6—O3—C5—C223.11 (9)N2—C17—C18—C19−178.65 (7)
C6—O3—C5—C15141.69 (7)C22—C17—C18—C19−0.62 (11)
C6—O3—C5—C16−100.17 (8)C17—C18—C19—C20−0.76 (12)
C1—C2—C5—O3−176.29 (6)C18—C19—C20—C211.36 (12)
C3—C2—C5—O3−55.54 (8)C19—C20—C21—C22−0.58 (12)
C1—C2—C5—C1570.71 (9)N2—C17—C22—C21179.45 (7)
C3—C2—C5—C15−168.54 (6)C18—C17—C22—C211.38 (10)
C1—C2—C5—C16−58.17 (9)N2—C17—C22—C230.26 (10)
C3—C2—C5—C1662.58 (8)C18—C17—C22—C23−177.81 (7)
C5—O3—C6—N2−174.90 (6)C20—C21—C22—C17−0.78 (11)
C5—O3—C6—C75.28 (11)C20—C21—C22—C23178.41 (7)
C17—N2—C6—O3−174.60 (6)C6—C7—C23—O4179.29 (7)
C26—N2—C6—O32.79 (10)C3—C7—C23—O4−1.91 (11)
C17—N2—C6—C75.22 (11)C6—C7—C23—C22−1.63 (10)
C26—N2—C6—C7−177.39 (7)C3—C7—C23—C22177.18 (6)
O3—C6—C7—C23177.57 (7)C17—C22—C23—O4−178.34 (7)
N2—C6—C7—C23−2.22 (11)C21—C22—C23—O42.47 (11)
O3—C6—C7—C3−1.33 (11)C17—C22—C23—C72.55 (10)
N2—C6—C7—C3178.88 (6)C21—C22—C23—C7−176.63 (7)
C2—C3—C7—C6−30.00 (8)N1—C4—C24—C2547.81 (9)
C4—C3—C7—C6−147.68 (7)C3—C4—C24—C25−66.92 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.94 (2)1.86 (2)2.7880 (10)173 (2)
O1W—H2W1···O40.94 (2)1.89 (2)2.8247 (9)171 (2)
C24—H24A···O40.972.313.0213 (11)129
C24—H24B···O20.972.493.0748 (11)119
C15—H15B···O1ii0.962.423.3641 (11)168
C26—H26C···O1Wiii0.962.453.3333 (12)152
C19—H19···Cg1iii0.932.843.6777 (10)151
C25—H25B···Cg2iv0.962.793.5358 (12)135

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2154).

References

  • Bruker (2005). APEX2 , SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4650–o4651.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.
  • Duraipandiyan, V. & Ignacimuthu, S. (2009). J. Ethnopharmacol.123, 494–498. [PubMed]
  • Magedov, I. V., Manpadi, M., Ogasawara, M. A., Dhawan, A. S., Rogelj, S., Van Slambrouck, S., Steelant, W. F., Evdokimov, N. M., Uglinskii, P. Y., Elias, E. M., Knee, E. J., Tongwa, P., Antipin, M. Y. & Kornienko, A. (2008). J. Med. Chem.51, 2561–2570. [PubMed]
  • Marco-Contelles, J., Leon, R., Lopez, M. G., García, A. G. & Villarroya, M. (2006). Eur. J. Med. Chem.41, 1464–1469. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography