PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1071–m1072.
Published online 2009 August 15. doi:  10.1107/S1600536809030177
PMCID: PMC2970138

Poly[bis­(dimethyl­ammonium) [bis­(dimethyl­amine-κN)tris­(μ2-terephthalato-κ2 O 1:O 4)dizinc(II)] N,N-dimethyl­formamide disolvate hexa­hydrate]

Abstract

The title compound, {(C2H8N)2[Zn2(C8H4O4)3(C2H7N)2]·2C3H7NO·6H2O}n, consists of two-dimensional non-inter­penetrated sheets with 63 topology, which are stacked together in an …ABAB… packing mode along the c axis. The distance between adjacent A and B sheets is ca 7.3 Å. In the structure, the ZnII center is coordinated by three O atoms from three terephthalate groups and one N atom from one dimethyl­amine ligand, adopting a distorted tetra­hedral geometry. All solvent water mol­ecules are disordered. In the structure, N—H(...)O and O—H(...)O hydrogen bonds are observed.

Related literature

For background to metal-organic frameworks, see: Kitagawa et al. (2004 [triangle]); Rowsell et al. (2004 [triangle]); Tranchemontagne et al. (2008 [triangle]); Wang et al. (2008 [triangle]); Hawxwell et al. (2006 [triangle]). For related structures, see: Wang et al. (2007 [triangle]); Go et al.(2007 [triangle]); Dai et al. (2004 [triangle]); Guo et al. (2009 [triangle]); He et al. (2005 [triangle]); Zhu et al. (2007 [triangle]); Clausen et al. (2005 [triangle]); Dybtsev et al. (2004 [triangle]); Robin & Fromm (2006 [triangle]); Rowsell & Yaghi (2004 [triangle]); Suh et al. (2008 [triangle]); Wu et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1071-scheme1.jpg

Experimental

Crystal data

  • (C2H8N)2[Zn2(C8H4O4)3(C2H7N)2]·2C3H7NO·6H2O
  • M r = 1059.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1071-efi1.jpg
  • a = 18.421 (6) Å
  • b = 30.906 (11) Å
  • c = 11.346 (4) Å
  • V = 6459 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 291 K
  • 0.28 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.81, T max = 0.85
  • 49068 measured reflections
  • 6463 independent reflections
  • 3985 reflections with I > 2σ(I)
  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.106
  • S = 1.04
  • 6463 reflections
  • 358 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030177/at2837sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030177/at2837Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work is supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).

supplementary crystallographic information

Comment

The study of one-, two- or three-dimensional metal-organic frameworks (MOFs) has attracted much attention in the past decade due to not only their various intriguing framework topologies (Kitagawa et al., 2004; Rowsell & Yaghi 2004; Robin et al., 2006; Suh et al., 2008) but also for their potential applications in gas storage (Rowsell et al., 2004), separation (Dybtsev et al., 2004) and catalysis (Wu et al., 2005) etc. Particular attention has been attracted to the isolation and characterization of two-dimensional topologies that comprise just one kind of regular polygon based upon hexagons, squares and triangles corresponding to the 63, 44, 36 topology, respectively. In the construction of hybrid frameworks, aromatic polycarboxylates, for example, terephalate (1,4-benzenedicarboxylate) are commonly used as bridging ligands (Wang et al., 2008; Hawxwell et al., 2006; Clausen et al., 2005; Tranchemontagne et al., 2008) because they can adopt monodentate or chelating coordination modes.

Here we employ terephalate as the bridging ligands to obtain the two-dimensional honeycomb networks (Go et al., 2007; Wang et al., 2007; He et al., 2005) because of the availability of three-coordinated vertices. It is well known that metal-organic framework structures possessing large voids tend to form interpenetrated topologies. Some examples of honeycomb compounds which form interpenetrated networks have been reported (Dai et al., 2004; Guo et al., 2009). In contrast, the title compound is an unusual example of two-dimensional noninterpenetrated sheets with the 63 topology.

The Zn center is coordinated by three O atoms from three terephalate groups and one N atom from dimethylamine ligand, adopting a tetrahedral geometry (Fig. 1). The bond lengths of Zn—O range from 1.956 Å to 1.984 Å, while the Zn—N bond distance is 2.063 Å (Table 1). The Zn centers are linked by terephalate ligands, resulting in two-dimensional corrugated sheets stacking along the c axis (Fig. 2 and 3). These two-dimensional sheets are stacked together in an ABAB packing mode along the c axis. The distance between the adjacent A and B sheets is ca 7.3 Å (Zn···Zn distance). The offset distance between the adjacent sheets is ca. 12.3 Å along the a axis in the ab plane. Under hydrothermal conditions, it is worthy to note that the DMF solvent is decomposed into dimethylamine, which coordinates to Zn center in the structure. The similar examples can be found in other metal-organic frameworks (Zhu et al., 2007). In the structure, it is observed N—H···O and O—H···O hydrogen bonds (Table 2).

Experimental

A mixture of Zn(NO3)2.6H2O (29.7 mg, 0.1 mmol) and terephthalic acid (16.6 mg, 0.1 mmol) in a molar ratio of 1:1 combined with 6 ml DMF was stirred for 20 min at room temperature. Then the solution was heated hydrothermally in a 25 ml Teflon-lined stainless-steel vessel at 443 K for three days under autogenous pressure. Slow cooling of the resulting solution to room temperature at the rate of 10 °C.h-1 afforded colourless block crystals suitable for single-crystal X-ray structure analysis. Yield: 27%. These crystals were separated, washed thoroughly with DMF, and dried. Analysis calculated for C19H33N3O10Zn: C 43.15; H 6.29; N 7.95%. Found: C 43.12; H 6.26; N 7.99%.

Refinement

The C(H) atoms of terephthalic acid ligands, dimethylamine ligands, DMF molecules and the N(H) atoms were all placed in calculated position (C—H = 0.93 Å or 0.96 Å, and N—H = 0.91 Å) and refined using a riding model, with Uĩso(H) = 1.2Ueq(C, N) or Uĩso(H) = 1.5Ueq(C). All solvent water molecules are disordered, and the O(H) atoms were located in a difference Fourier map and refined as riding (O—H = 0.85 Å), with Uĩso(H) = 1.2 or 1.5Ueq(O).

Figures

Fig. 1.
ORTEP diagram of the title compound. Displacement ellipsoids are drawn at the 30% probablity level. Hydrogen atoms, solvent dimethylamine, DMF, and water molecules are omitted for clarity.
Fig. 2.
The stacking without interpenetration of sheets viewed from the c axis for the title compound.
Fig. 3.
The two-dimensional corrugated sheets packing along the c axis of the title compound.

Crystal data

(C2H8N)2[Zn2(C8H4O4)3(C2H7N)2]·2C3H7NO·6H2OF(000) = 2232
Mr = 1059.72Dx = 1.090 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6858 reflections
a = 18.421 (6) Åθ = 2.2–23.6°
b = 30.906 (11) ŵ = 0.80 mm1
c = 11.346 (4) ÅT = 291 K
V = 6459 (4) Å3Block, colourless
Z = 40.28 × 0.22 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer6463 independent reflections
Radiation source: sealed tube3985 reflections with I > 2σ(I)
graphiteRint = 0.090
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −22→22
Tmin = 0.81, Tmax = 0.85k = −35→38
49068 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0437P)2] where P = (Fo2 + 2Fc2)/3
6463 reflections(Δ/σ)max < 0.001
358 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.748174 (18)0.574369 (10)0.82017 (3)0.03184 (10)
O10.65833 (10)0.56316 (7)0.90871 (16)0.0365 (5)
O20.66892 (11)0.49777 (6)0.82720 (15)0.0346 (4)
O30.84206 (11)0.54729 (7)0.85243 (16)0.0379 (5)
O40.80801 (10)0.52970 (7)1.03599 (16)0.0396 (5)
O50.75628 (10)0.63783 (6)0.79740 (15)0.0330 (4)
O60.78004 (10)0.63646 (6)0.98921 (16)0.0346 (4)
N10.73121 (13)0.55959 (8)0.6450 (2)0.0358 (6)
H1A0.72000.53100.64000.043*
C10.63617 (15)0.52421 (10)0.8892 (2)0.0358 (7)
C20.56500 (15)0.51227 (9)0.9466 (2)0.0343 (6)
C30.52584 (15)0.54188 (9)1.0140 (2)0.0349 (6)
H30.54310.56991.02410.042*
C40.53859 (14)0.47065 (9)0.9343 (2)0.0338 (6)
H40.56480.45070.89020.041*
C50.85371 (15)0.53206 (9)0.9570 (2)0.0303 (6)
C60.92994 (15)0.51533 (9)0.9779 (2)0.0348 (6)
C70.97830 (16)0.50915 (9)0.8842 (2)0.0347 (6)
H70.96370.51520.80760.042*
C80.95059 (16)0.50634 (9)1.0942 (2)0.0375 (7)
H80.91820.51051.15610.045*
C90.76932 (16)0.65657 (10)0.8979 (3)0.0390 (7)
C100.76968 (16)0.70493 (10)0.8943 (3)0.0388 (7)
C110.77888 (16)0.72718 (9)0.9980 (2)0.0368 (7)
H110.78510.71211.06830.044*
C120.75900 (15)0.72744 (10)0.7922 (3)0.0399 (7)
H120.75170.71250.72200.048*
C130.79857 (15)0.56728 (10)0.5745 (2)0.0361 (7)
H13A0.79850.54880.50650.054*
H13B0.84040.56100.62200.054*
H13C0.80010.59700.54970.054*
C140.66929 (16)0.58483 (10)0.5948 (3)0.0384 (7)
H14A0.68320.61460.58670.058*
H14B0.62820.58280.64660.058*
H14C0.65660.57330.51900.058*
N20.71822 (14)0.58391 (7)0.1646 (2)0.0354 (6)
H2A0.74330.57210.10390.043*
H2B0.68980.60510.14000.043*
C150.76977 (15)0.60535 (9)0.2428 (3)0.0367 (7)
H15A0.76300.59500.32190.055*
H15B0.76180.63600.24050.055*
H15C0.81840.59910.21750.055*
C160.67670 (15)0.54833 (9)0.2260 (3)0.0368 (7)
H16A0.70520.53710.28990.055*
H16B0.66660.52550.17090.055*
H16C0.63190.55970.25610.055*
N30.99518 (13)0.65769 (8)0.7182 (2)0.0429 (6)
O70.94026 (11)0.70680 (7)0.62427 (17)0.0433 (5)
C171.07238 (16)0.66164 (10)0.6734 (3)0.0437 (7)
H17A1.07830.68890.63380.066*
H17B1.08230.63850.61940.066*
H17C1.10550.66010.73870.066*
C180.97423 (16)0.61309 (10)0.7612 (3)0.0399 (7)
H18A0.99700.60760.83590.060*
H18B0.98990.59180.70510.060*
H18C0.92250.61150.77000.060*
C190.94719 (16)0.69498 (10)0.7315 (3)0.0422 (8)
H190.92720.70690.79950.051*
O80.9438 (3)0.67157 (17)−0.0031 (4)0.0440 (13)0.40
H8X0.97460.6689−0.05840.053*0.40
H8Y0.96370.66520.06220.053*0.40
O90.8541 (3)0.71662 (18)0.2652 (5)0.0474 (13)0.40
H9X0.88350.73540.23840.057*0.40
H9Y0.81090.72580.25770.057*0.40
O100.8853 (4)0.6581 (2)0.4696 (6)0.0503 (18)0.30
H10X0.92000.67600.47800.060*0.30
H10Y0.89860.63330.49380.060*0.30
O110.9212 (4)0.6362 (2)0.3470 (6)0.0475 (18)0.30
H11X0.96600.62960.34750.057*0.30
H11Y0.90330.64260.28020.057*0.30
O120.5802 (4)0.6679 (2)0.4913 (6)0.0494 (18)0.30
H12X0.54680.66160.44250.059*0.30
H12Y0.57610.69370.51660.059*0.30
O130.6421 (4)0.7102 (2)0.3095 (6)0.0480 (18)0.30
H13E0.61650.70060.25280.072*0.30
H13F0.62470.73420.33310.072*0.30
O140.5498 (4)0.7708 (2)0.2396 (6)0.0467 (17)0.30
H14E0.52080.76140.18730.056*0.30
H14F0.53160.79310.27220.056*0.30
O150.5532 (4)0.6179 (2)0.2001 (6)0.0437 (17)0.30
H15X0.52130.62890.24520.052*0.30
H15Y0.59330.63110.20890.052*0.30
O160.7248 (3)0.67473 (17)0.5303 (5)0.0454 (13)0.40
H16X0.69950.67400.46770.055*0.40
H16Y0.75970.69250.52200.055*0.40

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03285 (19)0.02973 (17)0.03293 (17)0.00038 (15)−0.00052 (13)−0.00070 (13)
O10.0329 (11)0.0421 (12)0.0345 (10)−0.0038 (9)−0.0018 (8)0.0003 (9)
O20.0368 (11)0.0372 (11)0.0297 (9)−0.0015 (9)−0.0077 (8)0.0008 (8)
O30.0346 (11)0.0463 (12)0.0327 (10)0.0112 (10)−0.0048 (8)−0.0049 (9)
O40.0354 (12)0.0464 (13)0.0370 (10)0.0076 (9)−0.0040 (9)−0.0066 (9)
O50.0330 (11)0.0335 (10)0.0326 (10)−0.0033 (9)−0.0025 (8)−0.0010 (8)
O60.0371 (11)0.0300 (10)0.0367 (10)−0.0031 (9)−0.0023 (8)−0.0054 (8)
N10.0339 (14)0.0394 (14)0.0340 (12)0.0024 (10)−0.0009 (9)0.0002 (11)
C10.0351 (17)0.0433 (18)0.0291 (14)−0.0044 (13)0.0054 (12)−0.0048 (13)
C20.0320 (16)0.0354 (16)0.0356 (14)−0.0002 (13)0.0018 (12)0.0039 (12)
C30.0307 (16)0.0355 (16)0.0386 (14)0.0028 (13)−0.0045 (12)−0.0043 (12)
C40.0273 (16)0.0383 (16)0.0357 (14)−0.0078 (12)−0.0012 (11)−0.0057 (12)
C50.0290 (16)0.0275 (14)0.0342 (15)−0.0017 (11)−0.0044 (12)−0.0034 (12)
C60.0333 (16)0.0373 (16)0.0339 (14)−0.0013 (13)0.0062 (12)0.0002 (12)
C70.0338 (16)0.0372 (16)0.0330 (14)0.0048 (13)0.0015 (12)−0.0067 (12)
C80.0285 (15)0.0458 (18)0.0381 (14)0.0021 (13)−0.0027 (12)−0.0015 (13)
C90.0422 (18)0.0308 (16)0.0440 (16)0.0016 (13)0.0018 (13)−0.0051 (14)
C100.0435 (18)0.0312 (15)0.0418 (15)0.0020 (13)−0.0039 (13)0.0024 (13)
C110.0390 (16)0.0367 (15)0.0347 (15)0.0005 (13)0.0066 (12)0.0017 (12)
C120.0430 (18)0.0376 (16)0.0393 (16)0.0082 (14)0.0040 (13)0.0076 (12)
C130.0384 (17)0.0369 (17)0.0331 (14)−0.0002 (13)−0.0042 (12)−0.0084 (12)
C140.0385 (17)0.0413 (18)0.0356 (15)0.0044 (13)0.0035 (13)−0.0107 (12)
N20.0398 (14)0.0327 (14)0.0337 (12)−0.0028 (11)0.0066 (10)0.0004 (10)
C150.0370 (17)0.0334 (15)0.0397 (15)−0.0177 (13)0.0012 (12)−0.0102 (12)
C160.0316 (16)0.0323 (16)0.0465 (16)−0.0011 (12)0.0123 (13)0.0159 (12)
N30.0420 (16)0.0411 (15)0.0455 (14)0.0119 (12)0.0147 (12)0.0146 (11)
O70.0435 (13)0.0435 (12)0.0428 (11)0.0153 (10)0.0121 (9)0.0114 (9)
C170.0383 (18)0.0393 (18)0.0534 (18)−0.0045 (14)−0.0091 (14)−0.0137 (15)
C180.0336 (16)0.0411 (17)0.0451 (16)−0.0150 (13)−0.0167 (13)0.0163 (14)
C190.0383 (18)0.0489 (19)0.0393 (16)0.0136 (15)0.0184 (13)0.0106 (14)
O80.053 (3)0.046 (3)0.033 (2)0.006 (3)0.016 (2)0.013 (2)
O90.036 (3)0.059 (4)0.047 (3)−0.001 (3)−0.004 (2)−0.004 (3)
O100.050 (5)0.050 (5)0.050 (4)−0.001 (4)−0.019 (4)0.007 (3)
O110.048 (4)0.054 (5)0.040 (4)0.017 (4)−0.014 (3)−0.011 (3)
O120.050 (5)0.054 (5)0.044 (4)−0.002 (4)−0.002 (3)−0.003 (3)
O130.054 (5)0.039 (4)0.051 (4)−0.002 (3)−0.003 (3)−0.011 (3)
O140.041 (4)0.055 (4)0.044 (4)−0.001 (3)0.005 (3)0.017 (3)
O150.038 (4)0.042 (4)0.051 (4)0.020 (3)0.006 (3)0.017 (3)
O160.047 (3)0.047 (3)0.042 (3)0.022 (3)0.003 (2)0.010 (2)

Geometric parameters (Å, °)

Zn1—O31.956 (2)N2—C161.509 (3)
Zn1—O11.967 (2)N2—H2A0.9063
Zn1—O51.984 (2)N2—H2B0.8851
Zn1—N12.063 (2)C15—H15A0.9600
O1—C11.290 (4)C15—H15B0.9600
O2—C11.236 (3)C15—H15C0.9600
O3—C51.295 (3)C16—H16A0.9600
O4—C51.231 (3)C16—H16B0.9600
O5—C91.301 (3)C16—H16C0.9600
O6—C91.224 (3)N3—C191.460 (4)
N1—C141.494 (4)N3—C181.512 (4)
N1—C131.495 (4)N3—C171.515 (4)
N1—H1A0.9100O7—C191.277 (3)
C1—C21.510 (4)C17—H17A0.9600
C2—C41.382 (4)C17—H17B0.9600
C2—C31.394 (4)C17—H17C0.9600
C3—C4i1.379 (4)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C3i1.379 (4)C18—H18C0.9600
C4—H40.9300C19—H190.9300
C5—C61.515 (4)O8—H8X0.8500
C6—C71.400 (4)O8—H8Y0.8501
C6—C81.402 (4)O9—H9X0.8500
C7—C8ii1.416 (4)O9—H9Y0.8499
C7—H70.9300O10—O111.682 (9)
C8—C7ii1.416 (4)O10—H10X0.8500
C8—H80.9300O10—H10Y0.8501
C9—C101.495 (4)O11—H11X0.8501
C10—C121.366 (4)O11—H11Y0.8501
C10—C111.373 (4)O12—H12X0.8500
C11—C11iii1.411 (6)O12—H12Y0.8499
C11—H110.9300O13—H13E0.8499
C12—C12iii1.394 (6)O13—H13F0.8501
C12—H120.9300O14—O14iii1.287 (14)
C13—H13A0.9600O14—H14E0.8501
C13—H13B0.9600O14—H14F0.8501
C13—H13C0.9600O15—H15X0.8499
C14—H14A0.9600O15—H15Y0.8500
C14—H14B0.9600O16—H16X0.8500
C14—H14C0.9600O16—H16Y0.8499
N2—C151.459 (3)
O3—Zn1—O1124.97 (9)N1—C14—H14A109.5
O3—Zn1—O5112.39 (8)N1—C14—H14B109.5
O1—Zn1—O5107.69 (8)H14A—C14—H14B109.5
O3—Zn1—N1102.68 (9)N1—C14—H14C109.5
O1—Zn1—N1109.00 (9)H14A—C14—H14C109.5
O5—Zn1—N196.02 (9)H14B—C14—H14C109.5
C1—O1—Zn1110.06 (17)C15—N2—C16112.4 (2)
C5—O3—Zn1118.27 (18)C15—N2—H2A108.3
C9—O5—Zn1109.86 (18)C16—N2—H2A108.4
C14—N1—C13110.3 (2)C15—N2—H2B104.0
C14—N1—Zn1111.51 (17)C16—N2—H2B112.7
C13—N1—Zn1110.75 (17)H2A—N2—H2B111.0
C14—N1—H1A108.1N2—C15—H15A109.5
C13—N1—H1A108.1N2—C15—H15B109.5
Zn1—N1—H1A108.1H15A—C15—H15B109.5
O2—C1—O1124.1 (3)N2—C15—H15C109.5
O2—C1—C2120.5 (3)H15A—C15—H15C109.5
O1—C1—C2115.4 (2)H15B—C15—H15C109.5
C4—C2—C3119.0 (3)N2—C16—H16A109.5
C4—C2—C1119.3 (3)N2—C16—H16B109.5
C3—C2—C1121.7 (3)H16A—C16—H16B109.5
C4i—C3—C2119.6 (3)N2—C16—H16C109.5
C4i—C3—H3120.2H16A—C16—H16C109.5
C2—C3—H3120.2H16B—C16—H16C109.5
C3i—C4—C2121.4 (3)C19—N3—C18122.1 (2)
C3i—C4—H4119.3C19—N3—C17122.6 (2)
C2—C4—H4119.3C18—N3—C17114.9 (2)
O4—C5—O3125.1 (3)N3—C17—H17A109.5
O4—C5—C6120.0 (2)N3—C17—H17B109.5
O3—C5—C6114.9 (2)H17A—C17—H17B109.5
C7—C6—C8121.0 (3)N3—C17—H17C109.5
C7—C6—C5121.2 (2)H17A—C17—H17C109.5
C8—C6—C5117.8 (2)H17B—C17—H17C109.5
C6—C7—C8ii120.3 (3)N3—C18—H18A109.5
C6—C7—H7119.9N3—C18—H18B109.5
C8ii—C7—H7119.9H18A—C18—H18B109.5
C6—C8—C7ii118.7 (3)N3—C18—H18C109.5
C6—C8—H8120.6H18A—C18—H18C109.5
C7ii—C8—H8120.6H18B—C18—H18C109.5
O6—C9—O5123.1 (3)O7—C19—N3100.8 (2)
O6—C9—C10122.0 (3)O7—C19—H19129.6
O5—C9—C10115.0 (3)N3—C19—H19129.6
C12—C10—C11119.3 (3)H8X—O8—H8Y109.5
C12—C10—C9122.1 (3)H9X—O9—H9Y109.5
C11—C10—C9118.6 (3)O11—O10—H10X93.4
C10—C11—C11iii120.06 (17)O11—O10—H10Y78.0
C10—C11—H11120.0H10X—O10—H10Y109.5
C11iii—C11—H11120.0O10—O11—H11X118.2
C10—C12—C12iii120.63 (19)O10—O11—H11Y119.4
C10—C12—H12119.7H11X—O11—H11Y116.1
C12iii—C12—H12119.7H12X—O12—H12Y111.8
N1—C13—H13A109.5H13E—O13—H13F109.5
N1—C13—H13B109.5O14iii—O14—H14E70.0
H13A—C13—H13B109.5O14iii—O14—H14F144.0
N1—C13—H13C109.5H14E—O14—H14F109.5
H13A—C13—H13C109.5H15X—O15—H15Y109.8
H13B—C13—H13C109.5H16X—O16—H16Y109.8
O3—Zn1—O1—C1−68.3 (2)C1—C2—C4—C3i179.4 (2)
O5—Zn1—O1—C1156.34 (17)Zn1—O3—C5—O46.8 (4)
N1—Zn1—O1—C153.3 (2)Zn1—O3—C5—C6−174.73 (17)
O1—Zn1—O3—C5−23.0 (2)O4—C5—C6—C7166.5 (3)
O5—Zn1—O3—C5110.6 (2)O3—C5—C6—C7−12.1 (4)
N1—Zn1—O3—C5−147.4 (2)O4—C5—C6—C8−13.7 (4)
O3—Zn1—O5—C9−72.17 (19)O3—C5—C6—C8167.7 (2)
O1—Zn1—O5—C969.27 (19)C8—C6—C7—C8ii−0.1 (5)
N1—Zn1—O5—C9−178.56 (18)C5—C6—C7—C8ii179.7 (3)
O3—Zn1—N1—C14−168.38 (18)C7—C6—C8—C7ii0.1 (5)
O1—Zn1—N1—C1457.3 (2)C5—C6—C8—C7ii−179.7 (3)
O5—Zn1—N1—C14−53.78 (19)Zn1—O5—C9—O65.0 (4)
O3—Zn1—N1—C13−45.2 (2)Zn1—O5—C9—C10−174.5 (2)
O1—Zn1—N1—C13−179.48 (17)O6—C9—C10—C12178.8 (3)
O5—Zn1—N1—C1369.45 (19)O5—C9—C10—C12−1.7 (4)
Zn1—O1—C1—O22.5 (3)O6—C9—C10—C11−3.2 (5)
Zn1—O1—C1—C2−176.58 (18)O5—C9—C10—C11176.3 (3)
O2—C1—C2—C43.4 (4)C12—C10—C11—C11iii−1.4 (3)
O1—C1—C2—C4−177.5 (2)C9—C10—C11—C11iii−179.46 (18)
O2—C1—C2—C3−178.0 (3)C11—C10—C12—C12iii1.4 (4)
O1—C1—C2—C31.1 (4)C9—C10—C12—C12iii179.40 (19)
C4—C2—C3—C4i−0.8 (4)C18—N3—C19—O7−122.2 (3)
C1—C2—C3—C4i−179.4 (2)C17—N3—C19—O765.0 (3)
C3—C2—C4—C3i0.8 (4)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+2; (iii) x, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O4iv0.912.273.109 (3)152
N1—H1A···O20.912.543.040 (3)115
N2—H2A···O4v0.911.932.770 (3)153
N2—H2B···O150.892.643.241 (7)127
O8—H8X···O12vi0.852.092.519 (9)111
O8—H8X···N3v0.852.593.329 (5)147
O9—H9X···O9iii0.851.612.063 (11)110
O10—H10X···O70.851.952.524 (7)124
O11—H11Y···O90.852.472.927 (9)115
O11—H11X···O15vi0.851.732.552 (10)161
O12—H12X···O8vii0.852.042.519 (9)115
O13—H13F···O13iii0.851.772.460 (14)137
O13—H13F···O140.852.082.650 (10)124
O15—H15X···O11vii0.852.132.552 (10)110
O16—H16X···O120.852.222.709 (9)116
O16—H16X···O130.852.373.131 (9)150
O16—H16Y···O100.852.623.079 (9)116

Symmetry codes: (iv) −x+3/2, −y+1, z−1/2; (v) x, y, z−1; (vi) x+1/2, y, −z+1/2; (iii) x, −y+3/2, z; (vii) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2837).

References

  • Bruker (2004). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M. A. S. & Iversen, B. B. (2005). J. Solid State Chem.178, 3342–3351.
  • Dai, J. C., Wu, X. T., Hu, S. M., Fu, Z. Y., Zhang, J. J., Du, W. X., Zhang, H. H. & Sun, R. Q. (2004). Eur. J. Inorg. Chem pp. 2096–2106.
  • Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc 126, 32–33. [PubMed]
  • Go, Y. B., Wang, X. Q. & Jacobson, A. J. (2007). Inorg. Chem.46, 6594–6600. [PubMed]
  • Guo, H. D., Guo, X. M., Batten, S. R., Song, J. F., Song, S. Y., Dang, S., Zheng, G. L., Tang, J. K. & Zhang, H. J. (2009). Cryst. Growth Des.9, 1394–1401.
  • Hawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808–814. [PubMed]
  • He, X., Lu, C. Z., Yuan, D. Q., Chen, L. J., Zhang, Q. Z. & Wu, C. D. (2005). Eur. J. Inorg. Chem pp. 4598–4606.
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed 43, 2334–2375. [PubMed]
  • Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev 250, 2127–2157.
  • Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc 126, 5666–5667. [PubMed]
  • Rowsell, J. L. C. & Yaghi, O. M. (2004). Micropor. Mesopor. Mater.73, 3–14.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suh, M. P., Cheon, Y. E. & Lee, E. Y. (2008). Coord. Chem. Rev.252, 1007–1026.
  • Tranchemontagne, D. J., Hunt, J. R. & Yaghi, O. M. (2008). Tetrahedron, 64, 8553–8557.
  • Wang, X. W., Chen, J. Z. & Liu, J. H. (2007). Cryst. Growth Des.7, 1227–1229.
  • Wang, F. K., Yang, S. Y., Huang, R. B., Zheng, L. S. & Batten, S. R. (2008). CrystEngComm, 10, 1211–1215.
  • Wu, C. D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc 127, 8940–8941. [PubMed]
  • Zhu, L.-N., Gao, S. & Ng, S. W. (2007). Acta Cryst. E63, m2987–m2988.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography