PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1053.
Published online 2009 August 8. doi:  10.1107/S1600536809030955
PMCID: PMC2970137

(meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene)nickel(II) bis­[O,O′-bis(4-methyl­phen­yl) dithio­phosphate]

Abstract

In the title compound, [Ni(C16H32N4)](C14H14O2PS2)2 or [Ni(trans[14]dien)][S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene, the NiII ion lies across a centre of inversion and is four-coordinated in a relatively undistorted square-planar arrangement by the four N atoms of the macrocyclic ligand trans[14]dien. The two O,O′-di(4-methyl­phen­yl)dithio­phos­phates act as counter-ions to balance the charge. Important geometric data include Ni—N = 1.9135 (16) and 1.9364 (15) Å.

Related literature

For related structures, see: Xie et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1053-scheme1.jpg

Experimental

Crystal data

  • [Ni(C16H32N4)](C14H14O2PS2)2
  • M r = 957.85
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1053-efi1.jpg
  • a = 8.0044 (6) Å
  • b = 10.0996 (8) Å
  • c = 16.4004 (12) Å
  • α = 80.418 (1)°
  • β = 81.333 (1)°
  • γ = 69.836 (1)°
  • V = 1220.95 (16) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 278 K
  • 0.18 × 0.14 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.888, T max = 0.935
  • 6525 measured reflections
  • 4305 independent reflections
  • 3756 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.085
  • S = 1.04
  • 4305 reflections
  • 273 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030955/dn2479sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030955/dn2479Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Education Committee of Sichuan Province of China (project No. 2006 A110, 07ZA161), the Science and Technology Office of Zigong City of China (project No. 08X01), and the University Key Laboratory of Corrosin and Protection of Materials of Sichuan Province of China (project No. 2008 C L04).

supplementary crystallographic information

Comment

As part of an investigation to the potential applications of tetramine macrocyclic transition metal complexs as artificial enzyme models, we have recently reported the structures of [Ni(teta)][S2P(OCH2Ph)2]2, where teta is meso-5,5,7,12,12,14- hexamethyl-1,4,8,11-tetraazacyclotetradecane (Xie et al., 2008). Here we report the structure of [Ni(trans[14]dien)] [S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14- hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

In the title compound, the NiII atom exhibits a relatively undistorted square-planar geometry (Fig.1), which lies on an inversion centre and is coordinated by four N atoms of the macrocyclic ligand trans[14]dien. The two O,O'-di(4-methylphenyl) dithiophosphates only act as counter-ions to balance the charge.All the bond lengths and angles in the complex are generally within normal ranges (Allen et al., 1987).

Experimental

meso-5,7,7,12,14,14-Hexamethyl-1,4,8,1 l-tetraazacyclotetradeca-4, 11-diene nickel(II) perchlorate(2 mmol 1.28 g) was added to a solution of diethylammonium O,O'-di(4-methylphenyl)dithiophosphate (4 mmol 1.534 g) in 60 ml methanol. The mixture was refluxed for 8 h at 353 K and then filtered. The filtrate was kept at room temperature and orange block crystals were obtained after 4 days.

Refinement

H atoms on C were fixed geometrically and treated as riding, with C—H = 0.97 Å (methylene), 0.96Å (methyl) or 0.93Å (aromatic) and Uiso(H) = 1.2Ueq(C,methylene and aromatic) or Uiso(H) = 1.5Ueq(C,methyl). The H atoms on N were determined with difference Fourier syntheses and refined isotropically.

Figures

Fig. 1.
The molecular structure of compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.H atoms have been omitted for the sake of clarity.[Symmetry code: (i) -x + 1, -y + 1, -z + 1].

Crystal data

[Ni(C16H32N4)](C14H14O2PS2)2Z = 1
Mr = 957.85F(000) = 506
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0044 (6) ÅCell parameters from 3628 reflections
b = 10.0996 (8) Åθ = 2.4–28.3°
c = 16.4004 (12) ŵ = 0.68 mm1
α = 80.418 (1)°T = 278 K
β = 81.333 (1)°Block, orange
γ = 69.836 (1)°0.18 × 0.14 × 0.10 mm
V = 1220.95 (16) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4305 independent reflections
Radiation source: fine-focus sealed tube3756 reflections with I > 2σ(I)
graphiteRint = 0.012
[var phi] and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→6
Tmin = 0.888, Tmax = 0.935k = −12→11
6525 measured reflectionsl = −18→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4007P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4305 reflectionsΔρmax = 0.50 e Å3
273 parametersΔρmin = −0.33 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.50000.50000.03886 (12)
S10.51679 (8)0.93375 (7)0.29986 (4)0.06565 (19)
S20.80706 (8)0.63426 (7)0.38281 (4)0.06475 (18)
P10.74959 (7)0.78569 (6)0.28970 (4)0.05003 (16)
O10.9135 (2)0.84827 (17)0.27241 (10)0.0615 (4)
O20.7837 (2)0.72019 (16)0.20251 (9)0.0582 (4)
N10.3850 (2)0.48109 (17)0.41047 (10)0.0448 (4)
N20.3765 (2)0.70211 (16)0.47728 (11)0.0437 (4)
C10.3764 (3)0.3675 (2)0.38841 (13)0.0507 (5)
C20.2623 (4)0.3675 (3)0.32375 (19)0.0806 (8)
H2A0.13870.41310.34180.121*
H2B0.28030.27130.31570.121*
H2C0.29480.41800.27230.121*
C30.4795 (3)0.2249 (2)0.42779 (15)0.0581 (6)
H3A0.49770.15720.38910.070*
H3B0.40600.19940.47630.070*
C40.2860 (3)0.6213 (2)0.36823 (15)0.0578 (6)
H4A0.18640.61550.34360.069*
H4B0.36400.65420.32470.069*
C50.2199 (3)0.7204 (2)0.43308 (16)0.0586 (6)
H5A0.17230.81780.40760.070*
H5B0.12640.69720.47140.070*
C60.3396 (3)0.7936 (2)0.54526 (14)0.0509 (5)
C70.2575 (4)0.9514 (2)0.51212 (18)0.0716 (7)
H7A0.33550.97680.46650.107*
H7B0.24261.00870.55560.107*
H7C0.14320.96710.49360.107*
C80.2158 (3)0.7501 (2)0.61610 (16)0.0668 (6)
H8A0.09980.77190.59780.100*
H8B0.20550.80100.66210.100*
H8C0.26390.64980.63320.100*
C90.9401 (3)0.9521 (2)0.20917 (14)0.0520 (5)
C101.0778 (3)0.9987 (3)0.21639 (16)0.0643 (6)
H101.14330.96340.26210.077*
C111.1198 (4)1.0978 (3)0.15607 (17)0.0743 (7)
H111.21371.12880.16180.089*
C121.0265 (4)1.1519 (3)0.08774 (16)0.0706 (7)
C130.8887 (4)1.1040 (3)0.08206 (17)0.0816 (8)
H130.82331.13920.03630.098*
C140.8432 (4)1.0046 (3)0.14216 (17)0.0733 (7)
H140.74850.97420.13700.088*
C151.0710 (5)1.2625 (4)0.0212 (2)0.1070 (11)
H15A1.02131.2641−0.02880.161*
H15B1.19851.23870.01030.161*
H15C1.02131.35440.04020.161*
C160.6734 (3)0.6529 (2)0.18118 (13)0.0562 (5)
C170.7294 (4)0.5084 (3)0.18933 (17)0.0736 (7)
H170.83600.45530.21180.088*
C180.6240 (6)0.4413 (4)0.1634 (2)0.0970 (10)
H180.66170.34260.16900.116*
C190.4665 (6)0.5173 (5)0.13009 (19)0.0973 (11)
C200.4129 (5)0.6620 (4)0.12418 (18)0.0931 (9)
H200.30460.71510.10320.112*
C210.5151 (4)0.7320 (3)0.14848 (16)0.0724 (7)
H210.47740.83080.14280.087*
C220.3564 (7)0.4413 (5)0.1003 (2)0.152 (2)
H22A0.23360.47910.12230.227*
H22B0.40160.34150.11920.227*
H22C0.36440.45550.04070.227*
H10.454 (2)0.725 (2)0.4405 (9)0.050 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.03462 (19)0.03290 (18)0.0518 (2)−0.01460 (14)−0.00187 (14)−0.00726 (14)
S10.0497 (3)0.0674 (4)0.0815 (4)−0.0103 (3)−0.0107 (3)−0.0296 (3)
S20.0511 (3)0.0700 (4)0.0695 (4)−0.0252 (3)0.0033 (3)0.0047 (3)
P10.0398 (3)0.0550 (3)0.0595 (3)−0.0211 (2)−0.0010 (2)−0.0099 (3)
O10.0508 (9)0.0682 (10)0.0724 (10)−0.0338 (8)−0.0172 (7)0.0134 (8)
O20.0550 (9)0.0629 (9)0.0610 (9)−0.0280 (7)0.0116 (7)−0.0162 (7)
N10.0388 (8)0.0465 (9)0.0529 (9)−0.0193 (7)−0.0021 (7)−0.0079 (7)
N20.0369 (8)0.0369 (8)0.0579 (10)−0.0161 (7)0.0019 (7)−0.0051 (7)
C10.0440 (11)0.0584 (12)0.0579 (12)−0.0248 (10)0.0044 (9)−0.0209 (10)
C20.0703 (17)0.094 (2)0.093 (2)−0.0299 (15)−0.0153 (15)−0.0417 (16)
C30.0655 (14)0.0489 (12)0.0706 (14)−0.0302 (11)0.0049 (11)−0.0222 (10)
C40.0523 (12)0.0564 (13)0.0676 (14)−0.0197 (10)−0.0186 (11)−0.0003 (11)
C50.0453 (12)0.0472 (12)0.0810 (16)−0.0100 (9)−0.0140 (11)−0.0058 (11)
C60.0502 (12)0.0365 (10)0.0670 (13)−0.0176 (9)0.0088 (10)−0.0150 (9)
C70.0739 (16)0.0372 (11)0.0992 (19)−0.0154 (11)0.0037 (14)−0.0134 (12)
C80.0630 (15)0.0575 (14)0.0740 (16)−0.0199 (11)0.0196 (12)−0.0154 (12)
C90.0511 (12)0.0509 (12)0.0578 (13)−0.0229 (10)−0.0060 (10)−0.0034 (10)
C100.0540 (13)0.0792 (16)0.0664 (14)−0.0344 (12)−0.0110 (11)0.0047 (12)
C110.0684 (16)0.0855 (18)0.0819 (18)−0.0482 (14)−0.0039 (14)0.0006 (14)
C120.0870 (18)0.0644 (15)0.0668 (16)−0.0392 (14)0.0014 (14)−0.0026 (12)
C130.108 (2)0.0776 (18)0.0716 (17)−0.0462 (17)−0.0337 (16)0.0127 (14)
C140.0813 (17)0.0724 (16)0.0822 (18)−0.0450 (14)−0.0304 (14)0.0095 (14)
C150.144 (3)0.106 (2)0.087 (2)−0.076 (2)−0.005 (2)0.0168 (18)
C160.0642 (14)0.0647 (14)0.0456 (11)−0.0305 (12)0.0101 (10)−0.0167 (10)
C170.0858 (18)0.0643 (15)0.0735 (17)−0.0294 (14)0.0077 (14)−0.0201 (13)
C180.142 (3)0.084 (2)0.085 (2)−0.062 (2)0.014 (2)−0.0307 (17)
C190.133 (3)0.134 (3)0.0614 (17)−0.086 (3)0.0001 (18)−0.0301 (18)
C200.100 (2)0.132 (3)0.0655 (17)−0.053 (2)−0.0194 (16)−0.0189 (18)
C210.0818 (18)0.0788 (17)0.0612 (15)−0.0287 (14)−0.0103 (13)−0.0133 (13)
C220.223 (5)0.224 (5)0.090 (2)−0.169 (5)−0.011 (3)−0.040 (3)

Geometric parameters (Å, °)

Ni1—N11.9135 (16)C7—H7C0.9600
Ni1—N1i1.9135 (16)C8—H8A0.9600
Ni1—N2i1.9364 (15)C8—H8B0.9600
Ni1—N21.9364 (15)C8—H8C0.9600
S1—P11.9505 (8)C9—C101.366 (3)
S2—P11.9575 (8)C9—C141.367 (3)
P1—O11.6131 (14)C10—C111.377 (3)
P1—O21.6216 (16)C10—H100.9300
O1—C91.395 (3)C11—C121.371 (4)
O2—C161.396 (3)C11—H110.9300
N1—C11.285 (2)C12—C131.369 (4)
N1—C41.476 (3)C12—C151.522 (4)
N2—C51.483 (3)C13—C141.388 (3)
N2—C61.497 (3)C13—H130.9300
C1—C31.484 (3)C14—H140.9300
C1—C21.500 (3)C15—H15A0.9600
C2—H2A0.9600C15—H15B0.9600
C2—H2B0.9600C15—H15C0.9600
C2—H2C0.9600C16—C171.360 (3)
C3—C6i1.518 (3)C16—C211.377 (4)
C3—H3A0.9700C17—C181.396 (4)
C3—H3B0.9700C17—H170.9300
C4—C51.494 (3)C18—C191.371 (5)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—C201.365 (5)
C5—H5A0.9700C19—C221.525 (4)
C5—H5B0.9700C20—C211.385 (4)
C6—C3i1.518 (3)C20—H200.9300
C6—C81.519 (3)C21—H210.9300
C6—C71.537 (3)C22—H22A0.9600
C7—H7A0.9600C22—H22B0.9600
C7—H7B0.9600C22—H22C0.9600
N1—Ni1—N1i180.000 (1)H7A—C7—H7B109.5
N1—Ni1—N2i94.15 (7)C6—C7—H7C109.5
N1i—Ni1—N2i85.85 (7)H7A—C7—H7C109.5
N1—Ni1—N285.85 (7)H7B—C7—H7C109.5
N1i—Ni1—N294.15 (7)C6—C8—H8A109.5
N2i—Ni1—N2180.000 (1)C6—C8—H8B109.5
O1—P1—O296.75 (9)H8A—C8—H8B109.5
O1—P1—S1112.77 (7)C6—C8—H8C109.5
O2—P1—S1111.07 (7)H8A—C8—H8C109.5
O1—P1—S2106.04 (6)H8B—C8—H8C109.5
O2—P1—S2110.96 (7)C10—C9—C14120.0 (2)
S1—P1—S2117.27 (4)C10—C9—O1115.11 (19)
C9—O1—P1127.94 (14)C14—C9—O1124.9 (2)
C16—O2—P1122.66 (13)C9—C10—C11120.1 (2)
C1—N1—C4119.78 (18)C9—C10—H10120.0
C1—N1—Ni1128.75 (15)C11—C10—H10120.0
C4—N1—Ni1111.31 (12)C12—C11—C10121.6 (2)
C5—N2—C6115.10 (16)C12—C11—H11119.2
C5—N2—Ni1107.47 (12)C10—C11—H11119.2
C6—N2—Ni1119.17 (13)C13—C12—C11117.2 (2)
C5—N2—H1106.3 (14)C13—C12—C15120.9 (3)
C6—N2—H1107.6 (14)C11—C12—C15121.9 (3)
Ni1—N2—H199.3 (14)C12—C13—C14122.3 (2)
N1—C1—C3120.94 (19)C12—C13—H13118.8
N1—C1—C2123.7 (2)C14—C13—H13118.8
C3—C1—C2115.32 (19)C9—C14—C13118.8 (2)
C1—C2—H2A109.5C9—C14—H14120.6
C1—C2—H2B109.5C13—C14—H14120.6
H2A—C2—H2B109.5C12—C15—H15A109.5
C1—C2—H2C109.5C12—C15—H15B109.5
H2A—C2—H2C109.5H15A—C15—H15B109.5
H2B—C2—H2C109.5C12—C15—H15C109.5
C1—C3—C6i117.74 (17)H15A—C15—H15C109.5
C1—C3—H3A107.9H15B—C15—H15C109.5
C6i—C3—H3A107.9C17—C16—C21120.8 (2)
C1—C3—H3B107.9C17—C16—O2118.9 (2)
C6i—C3—H3B107.9C21—C16—O2120.3 (2)
H3A—C3—H3B107.2C16—C17—C18118.9 (3)
N1—C4—C5106.65 (18)C16—C17—H17120.6
N1—C4—H4A110.4C18—C17—H17120.6
C5—C4—H4A110.4C19—C18—C17121.7 (3)
N1—C4—H4B110.4C19—C18—H18119.2
C5—C4—H4B110.4C17—C18—H18119.2
H4A—C4—H4B108.6C20—C19—C18117.9 (3)
N2—C5—C4106.26 (17)C20—C19—C22121.5 (4)
N2—C5—H5A110.5C18—C19—C22120.6 (4)
C4—C5—H5A110.5C19—C20—C21121.9 (3)
N2—C5—H5B110.5C19—C20—H20119.1
C4—C5—H5B110.5C21—C20—H20119.1
H5A—C5—H5B108.7C16—C21—C20118.9 (3)
N2—C6—C3i106.09 (16)C16—C21—H21120.6
N2—C6—C8110.29 (17)C20—C21—H21120.6
C3i—C6—C8112.3 (2)C19—C22—H22A109.5
N2—C6—C7110.74 (19)C19—C22—H22B109.5
C3i—C6—C7106.99 (18)H22A—C22—H22B109.5
C8—C6—C7110.33 (18)C19—C22—H22C109.5
C6—C7—H7A109.5H22A—C22—H22C109.5
C6—C7—H7B109.5H22B—C22—H22C109.5
O2—P1—O1—C961.8 (2)C5—N2—C6—C7−55.6 (2)
S1—P1—O1—C9−54.5 (2)Ni1—N2—C6—C7174.50 (14)
S2—P1—O1—C9175.93 (17)P1—O1—C9—C10171.21 (17)
O1—P1—O2—C16−178.20 (17)P1—O1—C9—C14−10.6 (4)
S1—P1—O2—C16−60.61 (18)C14—C9—C10—C11−0.4 (4)
S2—P1—O2—C1671.73 (17)O1—C9—C10—C11177.9 (2)
N2i—Ni1—N1—C110.52 (18)C9—C10—C11—C12−0.2 (4)
N2—Ni1—N1—C1−169.48 (18)C10—C11—C12—C130.4 (4)
N2i—Ni1—N1—C4−174.05 (14)C10—C11—C12—C15179.4 (3)
N2—Ni1—N1—C45.95 (14)C11—C12—C13—C14−0.1 (5)
N1i—Ni1—N2—C5−157.85 (14)C15—C12—C13—C14−179.2 (3)
N1i—Ni1—N2—C6−24.62 (14)C10—C9—C14—C130.6 (4)
C4—N1—C1—C3177.86 (19)O1—C9—C14—C13−177.5 (2)
Ni1—N1—C1—C3−7.0 (3)C12—C13—C14—C9−0.4 (5)
C4—N1—C1—C2−3.3 (3)P1—O2—C16—C17−101.5 (2)
Ni1—N1—C1—C2171.82 (17)P1—O2—C16—C2181.8 (2)
N1—C1—C3—C6i−33.5 (3)C21—C16—C17—C180.4 (4)
C2—C1—C3—C6i147.6 (2)O2—C16—C17—C18−176.3 (2)
C1—N1—C4—C5143.51 (19)C16—C17—C18—C190.1 (4)
Ni1—N1—C4—C5−32.4 (2)C17—C18—C19—C20−1.2 (5)
C6—N2—C5—C4179.55 (17)C17—C18—C19—C22178.5 (3)
Ni1—N2—C5—C4−45.1 (2)C18—C19—C20—C211.9 (5)
N1—C4—C5—N249.9 (2)C22—C19—C20—C21−177.8 (3)
C5—N2—C6—C3i−171.36 (17)C17—C16—C21—C200.2 (4)
Ni1—N2—C6—C3i58.76 (19)O2—C16—C21—C20176.9 (2)
C5—N2—C6—C866.8 (2)C19—C20—C21—C16−1.4 (4)
Ni1—N2—C6—C8−63.1 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2479).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xie, B., Zou, L.-K., He, Y.-G., Feng, J.-S. & Zhang, X.-L. (2008). Acta Cryst. E64, m622. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography