PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1114.
Published online 2009 August 22. doi:  10.1107/S1600536809032516
PMCID: PMC2970134

Di-μ-oxido-bis­[(4-formyl-2-methoxy­phenolato-κO 1)oxido(1,10-phenan­throline-κ2 N,N′)vanadium(V)]

Abstract

The title complex, [V2(C8H7O3)2O4(C12H8N2)2], is a centrosymmetric dimer formed by two VV complex units bridged by two μ2-oxido groups. The VV atom is six-coordinated by three oxide O atoms, one O atom from a vanillinate ligand and two N atoms from a 1,10-phenanthroline ligand in a significantly distorted octa­hedral geometry. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Related literature

For general background to vanadium complexes, see: Dong et al. (2000 [triangle]); Thompson et al. (1999 [triangle]); Yuan et al. (2003 [triangle]). For related structures, see: Li et al. (2004 [triangle]); Mokry & Carrano (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1114-scheme1.jpg

Experimental

Crystal data

  • [V2(C8H7O3)2O4(C12H8N2)2]
  • M r = 828.56
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1114-efi1.jpg
  • a = 9.3453 (18) Å
  • b = 9.786 (2) Å
  • c = 11.090 (3) Å
  • α = 80.097 (2)°
  • β = 65.672 (1)°
  • γ = 71.535 (1)°
  • V = 875.6 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.60 mm−1
  • T = 298 K
  • 0.21 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.884, T max = 0.904
  • 4641 measured reflections
  • 3038 independent reflections
  • 2372 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.177
  • S = 1.07
  • 3038 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809032516/hy2219sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032516/hy2219Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

supplementary crystallographic information

Comment

There is an increased interest in vanadium complexes due to their possible uses in pharmaceuticals for the treatment of diabetes (Thompson et al., 1999) and their practical applications in catalysis and material science (Yuan et al., 2003). The vanadium complexes with 1,10-phenanthroline ligand have been reported to exhibit potent antitumor activity (Dong et al., 2000). Vanillin is an useful organic compound with multifunctional groups including aldehyde, ether and phenol. In an effort to uncover the chemistry and biochemistry of vanadium with nitrogen- and oxygen-containing ligands, we report herein the synthesis and crystal structure of a new binuclear vanadium(V) complexes with mixed ligands of vanillin and 1,10-phenanthroline.

The molecular structure of the title complex is shown in Fig.1. In the presence of atmosphere, VIV is oxidized to VV. The complex is centrosymmetric dimer formed by two VV complex untis bridged by two µ2-oxido groups. The VV atom is six-coordinated by three oxido O atoms, one O atom from a vanillinate ligand and two N atoms from a 1,10-phenanthroline ligand in a significantly distorted octahedral geometry (Table 1). O3, O4, N1 and N2 are situated in the equatorial plane and O5 and O4i [symmetry code: (i) -x+2, -y+2, -z+1] are in the axial positions. The VV atom deviates from the least-squares plane of O3, O4, N1 and N2 by 0.319 (1) Å. In the complex, V1—O4 is 1.657 (3) Å and V1—O4i is 2.346 (3) Å, which illustrates that it is a very asymmetric bridge. The asymmetric structure is similar to that previously reported (Li et al., 2004; Mokry & Carrano, 1993).

There are extensive C—H···O hydrogen bonds in the crystal structure (Table 2). As shown in Fig. 2, the neighboring binuclear complex molecules are connected by the intermolecular hydrogen bonds into a three-dimensional network.

Experimental

Vanillin (0.152 g, 1 mmol) was dissolved in 5 ml absolute methanol and vanadyl sulfate hydrate (0.225 g, 1 mmol) was added to the solution, which was stirred and refluxed for 2 h at 323 K. Then, a methanol solution (5 ml) of 1,10-phenanthroline (0.198 g, 1 mmol) was added to the solution. The mixture was stirred and refluxed for 3 h at 323 K. The obtained brown solution was cooled to room temperature and filtered. The filtrate was kept at room temperature for 30 d. The crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(or 1.5 for methyl)Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids. [Symmetry code: (i) -x+2, -y+2, -z+1.]
Fig. 2.
The crystal packing of the title compound with hydrogen bonds (dashed lines).

Crystal data

[V2(C8H7O3)2O4(C12H8N2)2]Z = 1
Mr = 828.56F(000) = 424
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3453 (18) ÅCell parameters from 943 reflections
b = 9.786 (2) Åθ = 2.5–25.8°
c = 11.090 (3) ŵ = 0.60 mm1
α = 80.097 (2)°T = 298 K
β = 65.672 (1)°Needle, colorless
γ = 71.535 (1)°0.21 × 0.18 × 0.17 mm
V = 875.6 (3) Å3

Data collection

Bruker SMART 1000 CCD diffractometer3038 independent reflections
Radiation source: fine-focus sealed tube2372 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→11
Tmin = 0.884, Tmax = 0.904k = −11→8
4641 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.1054P)2 + 0.2207P] where P = (Fo2 + 2Fc2)/3
3038 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = −0.81 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.93548 (8)0.89398 (7)0.61983 (7)0.0324 (3)
N11.0193 (4)0.7386 (3)0.4733 (3)0.0337 (7)
N20.7109 (4)0.8658 (3)0.6109 (3)0.0329 (7)
O10.6378 (5)1.4243 (4)1.1968 (4)0.0683 (10)
O20.4949 (4)1.1848 (4)0.8894 (3)0.0544 (9)
O30.7773 (3)1.0430 (3)0.7319 (3)0.0385 (7)
O41.1051 (3)0.9466 (3)0.5544 (3)0.0340 (6)
O50.9616 (4)0.7689 (3)0.7300 (3)0.0439 (7)
C10.7557 (7)1.3424 (6)1.1248 (5)0.0544 (12)
H10.85441.33121.13210.065*
C20.7590 (6)1.2582 (5)1.0265 (5)0.0448 (11)
C30.6170 (5)1.2648 (5)1.0102 (4)0.0434 (10)
H30.51681.32121.06430.052*
C40.6250 (5)1.1877 (5)0.9139 (4)0.0366 (9)
C50.7772 (5)1.1044 (4)0.8284 (4)0.0350 (9)
C60.9175 (5)1.0962 (5)0.8477 (5)0.0435 (10)
H61.01821.03990.79420.052*
C70.9070 (6)1.1723 (5)0.9469 (5)0.0465 (11)
H71.00111.16540.96010.056*
C80.3380 (6)1.2439 (6)0.9822 (6)0.0684 (16)
H8A0.32891.19971.06840.103*
H8B0.25821.22640.95780.103*
H8C0.31951.34590.98400.103*
C91.1750 (5)0.6719 (4)0.4093 (4)0.0379 (9)
H91.25350.69510.42690.046*
C101.2269 (5)0.5683 (4)0.3167 (4)0.0423 (10)
H101.33730.52320.27420.051*
C111.1117 (6)0.5345 (4)0.2897 (4)0.0448 (11)
H111.14380.46560.22870.054*
C120.9468 (5)0.6033 (4)0.3537 (4)0.0398 (10)
C130.9066 (5)0.7047 (4)0.4456 (4)0.0301 (8)
C140.7401 (5)0.7743 (4)0.5200 (4)0.0326 (9)
C150.6154 (5)0.7467 (5)0.4962 (5)0.0419 (10)
C160.4555 (5)0.8190 (5)0.5727 (5)0.0503 (12)
H160.36830.80400.56160.060*
C170.4273 (5)0.9118 (5)0.6636 (5)0.0491 (11)
H170.32080.96080.71420.059*
C180.5583 (5)0.9333 (5)0.6811 (4)0.0407 (10)
H180.53750.99670.74370.049*
C190.8183 (6)0.5772 (5)0.3311 (5)0.0510 (12)
H190.84380.51200.26860.061*
C200.6622 (6)0.6447 (5)0.3981 (5)0.0519 (12)
H200.58130.62540.38090.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.0238 (4)0.0321 (4)0.0453 (4)−0.0028 (3)−0.0170 (3)−0.0116 (3)
N10.0333 (18)0.0263 (17)0.0485 (19)−0.0051 (14)−0.0234 (15)−0.0047 (14)
N20.0259 (17)0.0315 (18)0.0425 (19)−0.0053 (14)−0.0152 (14)−0.0043 (14)
O10.067 (3)0.074 (3)0.067 (2)−0.010 (2)−0.023 (2)−0.037 (2)
O20.0297 (16)0.074 (2)0.063 (2)−0.0057 (15)−0.0158 (15)−0.0325 (17)
O30.0272 (14)0.0411 (16)0.0473 (17)0.0006 (12)−0.0148 (12)−0.0200 (13)
O40.0232 (13)0.0363 (15)0.0449 (15)−0.0048 (11)−0.0131 (12)−0.0143 (12)
O50.0441 (17)0.0433 (17)0.0491 (17)−0.0068 (14)−0.0247 (14)−0.0059 (14)
C10.061 (3)0.060 (3)0.050 (3)−0.020 (3)−0.025 (3)−0.009 (2)
C20.050 (3)0.042 (3)0.050 (3)−0.012 (2)−0.025 (2)−0.007 (2)
C30.038 (2)0.045 (3)0.044 (2)−0.0042 (19)−0.0143 (19)−0.013 (2)
C40.033 (2)0.040 (2)0.037 (2)−0.0078 (18)−0.0139 (17)−0.0046 (18)
C50.036 (2)0.035 (2)0.033 (2)−0.0100 (18)−0.0114 (17)−0.0038 (17)
C60.035 (2)0.041 (2)0.057 (3)0.0017 (18)−0.025 (2)−0.014 (2)
C70.041 (3)0.051 (3)0.058 (3)−0.010 (2)−0.028 (2)−0.007 (2)
C80.035 (3)0.086 (4)0.079 (4)−0.006 (3)−0.013 (3)−0.033 (3)
C90.030 (2)0.032 (2)0.052 (2)−0.0033 (17)−0.0182 (19)−0.0039 (18)
C100.038 (2)0.031 (2)0.049 (2)0.0012 (18)−0.013 (2)−0.0095 (19)
C110.058 (3)0.030 (2)0.045 (2)−0.007 (2)−0.019 (2)−0.0094 (19)
C120.048 (3)0.030 (2)0.048 (2)−0.0098 (19)−0.026 (2)−0.0034 (18)
C130.030 (2)0.030 (2)0.033 (2)−0.0093 (16)−0.0142 (16)−0.0009 (16)
C140.028 (2)0.030 (2)0.044 (2)−0.0087 (16)−0.0190 (17)0.0004 (17)
C150.040 (2)0.038 (2)0.063 (3)−0.0146 (19)−0.034 (2)0.006 (2)
C160.038 (3)0.052 (3)0.076 (3)−0.018 (2)−0.037 (2)0.005 (2)
C170.027 (2)0.052 (3)0.068 (3)−0.009 (2)−0.020 (2)−0.002 (2)
C180.027 (2)0.040 (2)0.053 (3)−0.0036 (18)−0.0163 (19)−0.004 (2)
C190.060 (3)0.049 (3)0.064 (3)−0.016 (2)−0.037 (3)−0.014 (2)
C200.057 (3)0.051 (3)0.071 (3)−0.020 (2)−0.043 (3)−0.002 (2)

Geometric parameters (Å, °)

V1—O31.898 (3)C7—H70.9300
V1—O41.657 (3)C8—H8A0.9600
V1—O51.610 (3)C8—H8B0.9600
V1—O4i2.346 (3)C8—H8C0.9600
V1—N12.148 (3)C9—C101.398 (6)
V1—N22.245 (3)C9—H90.9300
N1—C91.324 (5)C10—C111.372 (6)
N1—C131.355 (5)C10—H100.9300
N2—C181.319 (5)C11—C121.392 (6)
N2—C141.350 (5)C11—H110.9300
O1—C11.196 (6)C12—C131.400 (6)
O2—C41.359 (5)C12—C191.426 (6)
O2—C81.403 (6)C13—C141.425 (6)
O3—C51.314 (5)C14—C151.407 (5)
O4—V1i2.346 (3)C15—C161.395 (7)
C1—C21.459 (6)C15—C201.440 (7)
C1—H10.9300C16—C171.362 (7)
C2—C71.383 (7)C16—H160.9300
C2—C31.393 (6)C17—C181.398 (6)
C3—C41.375 (6)C17—H170.9300
C3—H30.9300C18—H180.9300
C4—C51.416 (6)C19—C201.335 (7)
C5—C61.390 (6)C19—H190.9300
C6—C71.385 (6)C20—H200.9300
C6—H60.9300
O5—V1—O4105.63 (14)C6—C7—H7119.4
O5—V1—O399.73 (14)O2—C8—H8A109.5
O4—V1—O3105.13 (13)O2—C8—H8B109.5
O5—V1—N191.67 (14)H8A—C8—H8B109.5
O4—V1—N193.98 (13)O2—C8—H8C109.5
O3—V1—N1154.01 (13)H8A—C8—H8C109.5
O5—V1—N299.66 (13)H8B—C8—H8C109.5
O4—V1—N2152.20 (13)N1—C9—C10123.1 (4)
O3—V1—N281.37 (12)N1—C9—H9118.5
N1—V1—N273.69 (12)C10—C9—H9118.5
O5—V1—O4i172.60 (13)C11—C10—C9118.7 (4)
O4—V1—O4i77.95 (12)C11—C10—H10120.6
O3—V1—O4i85.35 (11)C9—C10—H10120.6
N1—V1—O4i81.55 (11)C10—C11—C12120.0 (4)
N2—V1—O4i75.66 (10)C10—C11—H11120.0
C9—N1—C13117.7 (3)C12—C11—H11120.0
C9—N1—V1123.9 (3)C11—C12—C13117.1 (4)
C13—N1—V1118.3 (3)C11—C12—C19124.3 (4)
C18—N2—C14118.8 (3)C13—C12—C19118.6 (4)
C18—N2—V1126.4 (3)N1—C13—C12123.4 (4)
C14—N2—V1114.8 (2)N1—C13—C14116.2 (3)
C4—O2—C8118.0 (4)C12—C13—C14120.4 (3)
C5—O3—V1132.1 (3)N2—C14—C15123.2 (4)
V1—O4—V1i102.05 (12)N2—C14—C13117.0 (3)
O1—C1—C2126.1 (5)C15—C14—C13119.9 (4)
O1—C1—H1117.0C16—C15—C14116.6 (4)
C2—C1—H1117.0C16—C15—C20125.5 (4)
C7—C2—C3119.6 (4)C14—C15—C20117.9 (4)
C7—C2—C1119.1 (4)C17—C16—C15119.8 (4)
C3—C2—C1121.3 (4)C17—C16—H16120.1
C4—C3—C2119.9 (4)C15—C16—H16120.1
C4—C3—H3120.1C16—C17—C18120.0 (4)
C2—C3—H3120.1C16—C17—H17120.0
O2—C4—C3125.1 (4)C18—C17—H17120.0
O2—C4—C5114.2 (4)N2—C18—C17121.6 (4)
C3—C4—C5120.7 (4)N2—C18—H18119.2
O3—C5—C6123.8 (4)C17—C18—H18119.2
O3—C5—C4117.4 (4)C20—C19—C12121.2 (4)
C6—C5—C4118.8 (4)C20—C19—H19119.4
C7—C6—C5119.8 (4)C12—C19—H19119.4
C7—C6—H6120.1C19—C20—C15121.9 (4)
C5—C6—H6120.1C19—C20—H20119.1
C2—C7—C6121.2 (4)C15—C20—H20119.1
C2—C7—H7119.4
O5—V1—N1—C9−77.6 (3)C3—C4—C5—C63.1 (6)
O4—V1—N1—C928.2 (3)O3—C5—C6—C7175.7 (4)
O3—V1—N1—C9166.0 (3)C4—C5—C6—C7−1.8 (6)
N2—V1—N1—C9−177.1 (3)C3—C2—C7—C62.3 (7)
O4i—V1—N1—C9105.4 (3)C1—C2—C7—C6−176.7 (4)
O5—V1—N1—C13101.4 (3)C5—C6—C7—C2−0.9 (7)
O4—V1—N1—C13−152.8 (3)C13—N1—C9—C10−0.7 (6)
O3—V1—N1—C13−15.1 (5)V1—N1—C9—C10178.3 (3)
N2—V1—N1—C131.8 (3)N1—C9—C10—C110.5 (6)
O4i—V1—N1—C13−75.6 (3)C9—C10—C11—C120.2 (6)
O5—V1—N2—C1891.8 (3)C10—C11—C12—C13−0.7 (6)
O4—V1—N2—C18−112.8 (4)C10—C11—C12—C19179.1 (4)
O3—V1—N2—C18−6.6 (3)C9—N1—C13—C120.1 (6)
N1—V1—N2—C18−179.2 (4)V1—N1—C13—C12−178.9 (3)
O4i—V1—N2—C18−94.0 (3)C9—N1—C13—C14177.6 (3)
O5—V1—N2—C14−90.9 (3)V1—N1—C13—C14−1.4 (4)
O4—V1—N2—C1464.4 (4)C11—C12—C13—N10.5 (6)
O3—V1—N2—C14170.6 (3)C19—C12—C13—N1−179.2 (4)
N1—V1—N2—C14−2.0 (3)C11—C12—C13—C14−176.8 (4)
O4i—V1—N2—C1483.2 (3)C19—C12—C13—C143.4 (6)
O5—V1—O3—C555.9 (3)C18—N2—C14—C15−0.1 (6)
O4—V1—O3—C5−53.3 (3)V1—N2—C14—C15−177.6 (3)
N1—V1—O3—C5170.7 (3)C18—N2—C14—C13179.5 (3)
N2—V1—O3—C5154.3 (3)V1—N2—C14—C132.0 (4)
O4i—V1—O3—C5−129.5 (3)N1—C13—C14—N2−0.5 (5)
O5—V1—O4—V1i173.33 (13)C12—C13—C14—N2177.1 (3)
O3—V1—O4—V1i−81.74 (13)N1—C13—C14—C15179.1 (3)
N1—V1—O4—V1i80.47 (12)C12—C13—C14—C15−3.3 (6)
N2—V1—O4—V1i18.6 (3)N2—C14—C15—C16−0.3 (6)
O4i—V1—O4—V1i0.0C13—C14—C15—C16−179.9 (4)
O1—C1—C2—C7177.4 (5)N2—C14—C15—C20−178.9 (4)
O1—C1—C2—C3−1.6 (8)C13—C14—C15—C201.5 (6)
C7—C2—C3—C4−1.0 (7)C14—C15—C16—C170.6 (6)
C1—C2—C3—C4178.0 (4)C20—C15—C16—C17179.2 (4)
C8—O2—C4—C3−11.6 (7)C15—C16—C17—C18−0.6 (7)
C8—O2—C4—C5169.6 (4)C14—N2—C18—C170.2 (6)
C2—C3—C4—O2179.5 (4)V1—N2—C18—C17177.3 (3)
C2—C3—C4—C5−1.7 (6)C16—C17—C18—N20.2 (7)
V1—O3—C5—C617.7 (6)C11—C12—C19—C20178.5 (4)
V1—O3—C5—C4−164.7 (3)C13—C12—C19—C20−1.7 (7)
O2—C4—C5—O34.3 (5)C12—C19—C20—C15−0.1 (8)
C3—C4—C5—O3−174.6 (3)C16—C15—C20—C19−178.3 (5)
O2—C4—C5—C6−178.0 (4)C14—C15—C20—C190.2 (7)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···O1ii0.932.483.393 (6)168
C16—H16···O4iii0.932.443.192 (5)138
C8—H8A···O5iv0.962.683.280 (6)121
C11—H11···O5v0.932.673.312 (5)127
C1—H1···O5vi0.932.623.441 (6)148

Symmetry codes: (ii) x+1, y−1, z−1; (iii) x−1, y, z; (iv) −x+1, −y+2, −z+2; (v) −x+2, −y+1, −z+1; (vi) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2219).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, Y. H., Narla, R. K., Sudbeck, E. & Uckun, F. M. (2000). J. Inorg. Biochem.78, 321–330. [PubMed]
  • Li, L. Z., Xu, T., Wang, D. Q. & Ji, H. W. (2004). Chin. J. Inorg. Chem.20, 236–240.
  • Mokry, L. M. & Carrano, C. J. (1993). Inorg. Chem.32, 6119–6121.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev.99, 2561–2571. [PubMed]
  • Yuan, M., Wang, E., Lu, Y., Wang, S., Li, Y., Wang, L. & Hu, C. (2003). Inorg. Chim. Acta, 344, 257–261.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography