PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1020–m1021.
Published online 2009 August 8. doi:  10.1107/S1600536809029407
PMCID: PMC2970126

Diazido­bis(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)nickel(II) monohydrate

Abstract

In the crystal structure of the title compound, [Ni(N3)2(C12H12N2)2]·H2O, the NiII atom is situated on a twofold axis and adopts a distorted octa­hedral geometry with the two 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) and the two azide ligands in a cis arrangement. The water solvent mol­ecule is disordered over two positions in a 1:1 ratio.

Related literature

For general background to 2,2′-bipyridine and its derivatives, see: Blau (1888 [triangle]); Constable (1989 [triangle]); Constable & Steel (1989 [triangle]); Juris et al. (1988 [triangle]). For related dmbpy structures, see: van Albada et al. (2004 [triangle], 2005 [triangle]); Catalan et al. (1995 [triangle]); Kooijman et al. (2002 [triangle]). For Ni–N bond lengths in azido-containing mononuclear nickel(II) complexes, see: Urtiaga et al. (1995 [triangle]). For an NiII complex with 5,5′-dimethyl-2,2′-bipyridyl, see: Hou (2008 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1020-scheme1.jpg

Experimental

Crystal data

  • [Ni(N3)2(C12H12N2)2]·H2O
  • M r = 529.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1020-efi1.jpg
  • a = 17.0770 (3) Å
  • b = 8.5350 (5) Å
  • c = 16.6700 (4) Å
  • V = 2429.69 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.84 mm−1
  • T = 293 K
  • 0.53 × 0.45 × 0.40 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.630, T max = 0.712
  • 7908 measured reflections
  • 4209 independent reflections
  • 2929 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.127
  • S = 1.03
  • 4209 reflections
  • 195 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: COLLECT and DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029407/rn2055sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029407/rn2055Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology, for their support. Special thanks go to Assoc. Dr Sujittra Youngme, Department of Chemistry, Khon Kaen University, for her kindness.

supplementary crystallographic information

Comment

It is 121 years since Blau first reported (Blau, 1888) the synthesis of 2,2'-bipyridine (bpy) and described the first metal complexes of this important ligand. Since then bpy and its derivatives have been continuously and extensively used in several aspects of coordination chemistry (Constable, 1989; Constable & Steel, 1989; Juris et al., 1988). However, up to now comparatively few X-ray crystal structures of ligand 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) have been published (Albada et al., 2004; Catalan et al., 1995; Kooijman et al., 2002). In this study, we report the synthesis and characterization of the new Ni(II) complex containing both dmbpy and azido ligands. Although 52 structures containing dmbpy with metals were found in the Cambridge Structural Database (CSD; Version 5.29, November 2008 update; Allen, 2002) there was only one case (CSD refcode POMFAZ; Hou, 2008) where en is present with both NiII and 5,5'-dimethyl-2,2'-bipyridyl.

It is found that the Ni ion is coordinated by four nitrogen atoms from dmbpy and two azido nitrogen atoms, taking on a distorted octahedral geometry. The two bidentate ligands have a cis disposition around the metal ion, forming practically perpendicular planes [N2—Ni1—N2i 89.80 (7), N1—Ni1—N1i 176.19 (7)°] (symmetry codes: i -x + 2, y, -z + 1/2). The rigidity of these ligands causes the bond angles N1— Ni1—N2, 78.26 (5)° to deviate significantly from orthogonality. This causes the geometry about the NiII ion to deviate slightly from that of an ideal octahedron. The Ni(1)—N(dmbpy) bond distances in a related complex [2.0897 (13) and 2.0882 (13) Å] (Urtiaga et al., 1995) are almost the same as those found in the Ni(II) compound of [NiII(bpy)2(N3)2] [2.067 (2)–2.114 (2) Å]. Good agreement is observed between the Ni(1)–N(azido) bond distance of 2.1053 (14) Å and those reported [2.094 (2) and 2.102 (3) Å] (Urtiaga et al., 1995) for azido containing mononuclear nickel(II) complexes.

Experimental

All chemicals were obtained commercially and used without further purification. The compound was prepared by adding a warm solution of dmbpy (0.181 g, 1.0 mmol) in methanol (15 ml) to a warming aqueous solution (10 ml) of Ni(CH3COO)2. 4H2O (0.123 g, 0.5 mmol). Afterward a solid of NaN3 (0.065 g, 1.0 mmol) was added. The green solution was slowly evaporated at room temperature and after few days, green plate-shaped crystals of [Ni(dmbpy)2(N3)2].H2O formed. They were filtered off, washed with mother liquid and air-dried. Yield ca 89%. Elemental analysis (%) found (calculated): C 54.4 (54.6), H 4.9 (4.8), N 26.3 (26.5). The IR spectrum shows the band corresponding to the asymmetric stretch of the azido ion, νas(N3), split at 2072 and 2024 cm-1. This indicates that the azido ligand is bonded asymmetrically by its two terminal N atoms.

Refinement

The water O atom is disordered which site occupancies of 0.5 and 0.5. All non-H atoms were refined anisotropically. H atoms in aromatic were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.96–1.01 Å [Uiso (H) = 1.2Ueq (C)]. H atoms of methyl groups of dmbpy were placed in calculated positions and refined with a riding model C—H = 0.96 Å.

Figures

Fig. 1.
A view of the title structure with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Ni(N3)2(C12H12N2)2]·H2OF(000) = 1096
Mr = 529.22Dx = 1.444 Mg m3Dm = 1.440 Mg m3Dm measured by flotation in aqueous KI
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7908 reflections
a = 17.0770 (3) Åθ = 2.7–27.5°
b = 8.5350 (5) ŵ = 0.84 mm1
c = 16.6700 (4) ÅT = 293 K
V = 2429.69 (16) Å3Plate, green
Z = 40.53 × 0.45 × 0.40 mm

Data collection

Nonius KappaCCD diffractometer4209 independent reflections
Radiation source: fine-focus sealed tube2929 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 32.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −25→25
Tmin = 0.630, Tmax = 0.712k = −12→12
7908 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127w = 1/[σ2(Fo2) + (0.0689P)2 + 0.3234P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4209 reflectionsΔρmax = 0.35 e Å3
195 parametersΔρmin = −0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni11.00000.25758 (3)0.25000.03045 (11)
C10.85037 (9)0.1839 (2)0.15504 (10)0.0394 (4)
C20.77052 (9)0.1813 (2)0.13931 (10)0.0430 (4)
C30.72270 (11)0.2632 (2)0.19237 (13)0.0485 (5)
C40.75485 (10)0.3478 (3)0.25456 (10)0.0444 (4)
C50.83592 (9)0.3501 (2)0.26388 (9)0.0351 (3)
C60.87691 (8)0.44736 (19)0.32433 (9)0.0346 (3)
C70.83951 (10)0.5554 (2)0.37348 (11)0.0455 (4)
C80.88410 (10)0.6520 (2)0.42157 (11)0.0474 (4)
C90.96489 (10)0.6414 (2)0.42151 (9)0.0404 (4)
C100.99748 (9)0.5262 (2)0.37327 (10)0.0378 (3)
C110.73848 (11)0.0947 (3)0.06809 (12)0.0571 (5)
C121.01596 (15)0.7508 (2)0.46878 (14)0.0526 (5)
N10.88262 (7)0.26572 (15)0.21515 (8)0.0341 (3)
N20.95560 (7)0.43102 (16)0.32590 (7)0.0339 (3)
N31.02626 (9)0.08562 (18)0.16354 (8)0.0434 (3)
N41.08684 (8)0.07905 (18)0.12842 (8)0.0402 (3)
N51.14499 (9)0.0716 (3)0.09306 (11)0.0655 (5)
O190.9708 (3)0.7988 (4)0.2398 (3)0.0853 (15)0.50
H10.8876 (10)0.120 (2)0.1214 (11)0.044 (5)*
H30.6660 (14)0.261 (2)0.1832 (13)0.053 (6)*
H40.7209 (11)0.404 (2)0.2906 (12)0.053 (6)*
H70.7824 (12)0.563 (2)0.3731 (11)0.049 (5)*
H80.8591 (13)0.735 (2)0.4557 (14)0.054 (6)*
H101.0548 (12)0.509 (2)0.3715 (11)0.045 (5)*
H11A0.77970.03570.04320.086*
H11B0.71750.16830.03020.086*
H11C0.69780.02470.08530.086*
H12A1.03850.82720.43340.079*
H12B1.05700.69220.49440.079*
H12C0.98500.80280.50880.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02557 (16)0.03435 (17)0.03144 (16)0.0000.00161 (9)0.000
C10.0336 (7)0.0443 (9)0.0403 (8)−0.0033 (7)−0.0006 (6)−0.0012 (7)
C20.0361 (8)0.0476 (10)0.0455 (8)−0.0063 (7)−0.0043 (6)0.0019 (8)
C30.0302 (8)0.0605 (12)0.0549 (10)−0.0022 (7)−0.0036 (7)0.0015 (8)
C40.0294 (7)0.0546 (11)0.0492 (9)0.0034 (7)0.0021 (6)−0.0002 (8)
C50.0292 (7)0.0377 (8)0.0384 (7)−0.0002 (6)0.0018 (5)0.0033 (6)
C60.0304 (7)0.0378 (8)0.0354 (7)0.0030 (6)0.0020 (5)0.0024 (6)
C70.0369 (8)0.0533 (11)0.0462 (9)0.0066 (7)0.0046 (7)−0.0081 (8)
C80.0483 (9)0.0506 (11)0.0433 (9)0.0086 (8)0.0059 (7)−0.0100 (8)
C90.0477 (9)0.0399 (9)0.0336 (7)−0.0002 (7)−0.0016 (6)−0.0010 (7)
C100.0342 (7)0.0411 (8)0.0381 (8)−0.0004 (6)−0.0013 (5)−0.0009 (7)
C110.0462 (10)0.0693 (14)0.0556 (11)−0.0115 (9)−0.0091 (8)−0.0088 (10)
C120.0645 (12)0.0489 (11)0.0444 (10)−0.0032 (8)−0.0044 (9)−0.0116 (8)
N10.0281 (6)0.0384 (7)0.0360 (7)−0.0014 (5)0.0007 (5)0.0000 (5)
N20.0313 (6)0.0357 (7)0.0347 (6)0.0013 (5)0.0017 (4)−0.0005 (5)
N30.0424 (7)0.0447 (8)0.0431 (7)−0.0017 (6)0.0084 (6)−0.0076 (6)
N40.0373 (7)0.0448 (8)0.0383 (7)0.0076 (6)−0.0032 (5)−0.0040 (6)
N50.0386 (8)0.0938 (15)0.0640 (10)0.0137 (9)0.0085 (7)−0.0099 (10)
O190.132 (5)0.0521 (16)0.072 (3)−0.021 (2)0.026 (3)−0.0070 (18)

Geometric parameters (Å, °)

Ni1—N1i2.0882 (13)C6—C71.389 (2)
Ni1—N12.0882 (13)C7—C81.379 (3)
Ni1—N2i2.0897 (13)C7—H70.978 (19)
Ni1—N22.0897 (13)C8—C91.383 (2)
Ni1—N32.1053 (14)C8—H81.00 (2)
Ni1—N3i2.1053 (14)C9—C101.387 (2)
C1—N11.340 (2)C9—C121.501 (3)
C1—C21.389 (2)C10—N21.340 (2)
C1—H11.008 (19)C10—H100.99 (2)
C2—C31.392 (3)C11—H11A0.9600
C2—C111.502 (3)C11—H11B0.9600
C3—C41.377 (3)C11—H11C0.9600
C3—H30.98 (2)C12—H12A0.9600
C4—C51.393 (2)C12—H12B0.9600
C4—H40.96 (2)C12—H12C0.9600
C5—N11.347 (2)N3—N41.1901 (19)
C5—C61.481 (2)N4—N51.157 (2)
C6—N21.3512 (18)O19—O19i1.053 (9)
N1i—Ni1—N1176.19 (7)C8—C7—C6119.07 (15)
N1i—Ni1—N2i78.26 (5)C8—C7—H7121.0 (12)
N1—Ni1—N2i98.99 (5)C6—C7—H7119.9 (12)
N1i—Ni1—N298.99 (5)C7—C8—C9120.74 (16)
N1—Ni1—N278.26 (5)C7—C8—H8121.0 (13)
N2i—Ni1—N289.80 (7)C9—C8—H8118.2 (13)
N1i—Ni1—N390.53 (5)C8—C9—C10116.59 (16)
N1—Ni1—N392.13 (5)C8—C9—C12122.57 (17)
N2i—Ni1—N390.12 (6)C10—C9—C12120.81 (17)
N2—Ni1—N3170.26 (5)N2—C10—C9123.88 (15)
N1i—Ni1—N3i92.13 (5)N2—C10—H10114.9 (11)
N1—Ni1—N3i90.53 (5)C9—C10—H10121.2 (11)
N2i—Ni1—N3i170.26 (5)C2—C11—H11A109.5
N2—Ni1—N3i90.12 (6)C2—C11—H11B109.5
N3—Ni1—N3i91.61 (8)H11A—C11—H11B109.5
N1—C1—C2123.57 (16)C2—C11—H11C109.5
N1—C1—H1116.1 (10)H11A—C11—H11C109.5
C2—C1—H1120.3 (10)H11B—C11—H11C109.5
C1—C2—C3116.64 (16)C9—C12—H12A109.5
C1—C2—C11120.97 (17)C9—C12—H12B109.5
C3—C2—C11122.39 (16)H12A—C12—H12B109.5
C4—C3—C2120.49 (16)C9—C12—H12C109.5
C4—C3—H3121.3 (12)H12A—C12—H12C109.5
C2—C3—H3118.2 (12)H12B—C12—H12C109.5
C3—C4—C5119.18 (17)C1—N1—C5119.11 (14)
C3—C4—H4119.4 (12)C1—N1—Ni1125.82 (11)
C5—C4—H4121.4 (12)C5—N1—Ni1114.73 (10)
N1—C5—C4120.87 (15)C10—N2—C6118.67 (13)
N1—C5—C6115.47 (13)C10—N2—Ni1126.35 (10)
C4—C5—C6123.61 (15)C6—N2—Ni1114.97 (10)
N2—C6—C7120.95 (15)N4—N3—Ni1123.70 (12)
N2—C6—C5115.17 (13)N5—N4—N3178.73 (18)
C7—C6—C5123.77 (14)
N1—C1—C2—C3−3.3 (3)N2—Ni1—N1—C1176.04 (14)
N1—C1—C2—C11176.43 (18)N3—Ni1—N1—C1−2.32 (14)
C1—C2—C3—C43.1 (3)N3i—Ni1—N1—C1−93.95 (14)
C11—C2—C3—C4−176.62 (19)N2i—Ni1—N1—C5−98.70 (11)
C2—C3—C4—C5−0.2 (3)N2—Ni1—N1—C5−10.79 (11)
C3—C4—C5—N1−2.9 (3)N3—Ni1—N1—C5170.84 (11)
C3—C4—C5—C6174.78 (17)N3i—Ni1—N1—C579.22 (12)
N1—C5—C6—N2−4.0 (2)C9—C10—N2—C60.2 (2)
C4—C5—C6—N2178.28 (16)C9—C10—N2—Ni1178.82 (12)
N1—C5—C6—C7172.35 (16)C7—C6—N2—C10−3.0 (2)
C4—C5—C6—C7−5.4 (3)C5—C6—N2—C10173.45 (14)
N2—C6—C7—C83.1 (3)C7—C6—N2—Ni1178.23 (13)
C5—C6—C7—C8−173.01 (16)C5—C6—N2—Ni1−5.34 (17)
C6—C7—C8—C9−0.4 (3)N1i—Ni1—N2—C107.22 (14)
C7—C8—C9—C10−2.2 (3)N1—Ni1—N2—C10−170.09 (14)
C7—C8—C9—C12175.99 (19)N2i—Ni1—N2—C10−70.86 (13)
C8—C9—C10—N22.4 (3)N3i—Ni1—N2—C1099.40 (14)
C12—C9—C10—N2−175.83 (16)N1i—Ni1—N2—C6−174.10 (10)
C2—C1—N1—C50.4 (3)N1—Ni1—N2—C68.59 (10)
C2—C1—N1—Ni1173.26 (13)N2i—Ni1—N2—C6107.82 (11)
C4—C5—N1—C12.8 (2)N3i—Ni1—N2—C6−81.92 (11)
C6—C5—N1—C1−175.05 (14)N1i—Ni1—N3—N4−32.56 (15)
C4—C5—N1—Ni1−170.89 (13)N1—Ni1—N3—N4144.70 (14)
C6—C5—N1—Ni111.29 (17)N2i—Ni1—N3—N445.70 (14)
N2i—Ni1—N1—C188.14 (14)N3i—Ni1—N3—N4−124.71 (16)

Symmetry codes: (i) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2055).

References

  • Albada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733–3742.
  • Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411–m1412.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Blau, F. (1888). Ber. Dtsch Chem. Ges.21, 1077–1078.
  • Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171.
  • Constable, E. C. (1989). Adv. Inorg. Chem.34, 1–33.
  • Constable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev.93, 205–233.
  • Hou, J. (2008). Acta Cryst. E64, m1571. [PMC free article] [PubMed]
  • Juris, A., Balzani, V., Barigelletti, F., Campagna, S., von Belser, P. & Zelewsky, A. (1988). Coord. Chem. Rev.84, 85–277.
  • Kooijman, H., Spek, A. L., van Albada, G. A. & Reedijk, J. (2002). Acta Cryst. C58, m124–m126. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Urtiaga, M. K., Arriortua, M. I., De Muro, I. G. & Cortes, R. (1995). Acta Cryst. C51, 62–65.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography