PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2205–o2206.
Published online 2009 August 22. doi:  10.1107/S1600536809032450
PMCID: PMC2970118

N-Cyano-7α-methoxy­carbonyl-6,14-endo-ethenotetra­hydro­northebaine

Abstract

In the title compound (systematic name: methyl 17-cyano-3,6-dimeth­oxy-4,5α-ep­oxy-6,14-endo-ethenomorphinan-7-carboxyl­ate), C23H24N2O5, the dihydro­furan ring adopts a twist conformation, while the piperidine ring is in a chair conformation. The benzene-fused cyclo­hexene ring adopts an envelope conformation. An intra­molecular C—H(...)O hydrogen bond is observed. Inter­molecular C—H(...)N and C—H(...)O hydrogen bonds form C(5) chains along the a and b axes, respectively, and together they form a three-dimensional network.

Related literature

For general background, see: Parrish et al.(2004 [triangle]); Bentley & Hardy (1967 [triangle]); Marton et al. (1995 [triangle]); Derrick et al. (2000 [triangle]); Lenz et al. (1986 [triangle]); Hoskin & Hanks (1991 [triangle]); Takemori et al. (1972 [triangle]); Liu et al. (2005 [triangle]). For the synthesis, see: Odabaşoğlu et al. (2009 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2205-scheme1.jpg

Experimental

Crystal data

  • C23H24N2O5
  • M r = 408.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2205-efi7.jpg
  • a = 7.1880 (3) Å
  • b = 11.1380 (4) Å
  • c = 24.6389 (10) Å
  • V = 1972.59 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.63 × 0.44 × 0.27 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.953, T max = 0.975
  • 9908 measured reflections
  • 2328 independent reflections
  • 2035 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.089
  • S = 1.04
  • 2328 reflections
  • 274 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032450/ci2873sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032450/ci2873Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Scientific and Technical Research Council of Turkey (TUBITAK, project No. 107 T676). We also thank the Turkish Grain Board (TMO) for the supply of thebaine.

supplementary crystallographic information

Comment

Morphine alkaloids and semisynthetic derivatives are important drugs for the relief of severe pain. A wide variety of modifications of the well known alkaloids thebaine, codeine and morphine have been described. The Diels-Alder adducts of the thebaine are key intermediates in the synthesis of the potent opioid analgesics (Parrish et al., 2004). Diels-Alder reactions between thebaine and dienophiles predominantly give rise to 7α adducts, and the corresponding 7β adducts have received little attention due to their difficulty of preparation (Bentley & Hardy 1967; Marton et al., 1995; Derrick et al., 2000).

The nature of the substituent at the nitrogen atom in morphine alkaloids is a significant factor having both quantitative and qualitative influence on their pharmacological activity (Lenz et al., 1986). The synthesis and pharmacological activities of 6,14-endoethanomorphinan derivatives have been extensively studied. The typical examples of the pharmacological active compounds were reported in the literature such as buprenorphine (Hoskin & Hanks 1991), etorphine (Takemori et al., 1972) and thienorphine (Liu et al., 2005).

The overall view and atom-labelling of the molecule of (I) are displayed in Fig. 1. The five-membered ring [O2/C6/C5/C11/C17] adopts a twist conformation. Rings A (N1/C9/C10/C11/C12/C13), B(C4/C5/C11/C10/C9/C8), C(C10/C11/C17/C16/C18/C19) and D(C10/C14/C15/C16/C18/C19) are not planar, having total puckering amplitudes, QT, of 0.596 (3) Å, 0.582 (2) Å, 0.768 (2)Å and 0.823 (2) Å, respectively. Rings A, B, C and D adopt chair, envelope, distorted boat and distorted boat conformations, respectively [for ring A: [var phi] = 96 (2)° and θ = 9.4 (3)°; for ring B: [var phi] = 350.1 (3)° and θ = 125.3 (3)°; for ring C: [var phi] = 179.0 (2)° and θ = 90.8 (2)°; for ring D: [var phi] = 6.2 (2)° and θ = 85.8 (1)°; Cremer & Pople, 1975). An intramolecular C20—H20A···O5 hydrogen bond is observed (Fig. 1).

The crystal packing is stabilized by intermolecular C9—H9···N2 and C3—H3···O1 hydrogen bonds (Table 1). As shown in Fig. 2 and Fig. 3, each of these hydrogen bonds forms a C(5) chain (Bernstein et al., 1995; Etter, 1990) and together they form a three-dimensional network.

Experimental

6,14-endo-Etheno-7α-methoxycarbonyltetrahydrothebaine was prepared according to the literature method (Odabaşoğlu et al., 2009). For the preparation of the title compound, 6,14-endo-etheno-7α-methoxycarbonyltetrahydrothebaine (240 mg, 0,6 mmol) was heated under reflux with cyanogen bromide (85m g, 0,8 mmol) in dry chloroform (20 ml) for 24 h and monitored by TLC. After evaporation of the solvent, the reaction mixture was separated by column chromatography, using a mixture of methanol-chloroform (1:1) as the eluant. The N-cyanonor compound was recrystallized from methanol in 2 d (m.p.440–441 K).

Refinement

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. In the absence of significant anomalous scattering, 1694 Friedel pairs were merged in the final refinement.

Figures

Fig. 1.
A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 15% probability level. The dashed line indicates a hydrogen bond.
Fig. 2.
Part of the crystal structure of (I), showing the formation of a C(5) chain along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity [symmetry code: (i) -x, 1/2 + y, 3/2 - z].
Fig. 3.
Part of the crystal structure of (I), showing the formation of a C(5) chain along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity [symmetry codes: (i) x - 1/2, 3/2 - y, 1 - z; (ii) x + 1/2, 3/2 - y, 1 - ...
Fig. 4.
Preparation of the title compound.

Crystal data

C23H24N2O5F(000) = 864
Mr = 408.44Dx = 1.375 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9908 reflections
a = 7.1880 (3) Åθ = 1.8–28.0°
b = 11.1380 (4) ŵ = 0.10 mm1
c = 24.6389 (10) ÅT = 296 K
V = 1972.59 (13) Å3Prism, colourless
Z = 40.63 × 0.44 × 0.27 mm

Data collection

Stoe IPDS 2 diffractometer2328 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2035 reflections with I > 2σ(I)
plane graphiteRint = 0.021
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω–scan rotation methodh = −9→9
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −13→13
Tmin = 0.953, Tmax = 0.975l = −30→20
9908 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0504P)2 + 0.208P] where P = (Fo2 + 2Fc2)/3
2328 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1582 (3)0.5657 (2)0.76990 (11)0.0558 (6)
C20.1229 (3)0.6871 (2)0.76212 (13)0.0651 (8)
H20.04300.72640.78590.078*
C30.2027 (3)0.7513 (2)0.72016 (12)0.0584 (7)
H30.16970.83120.71480.070*
C40.3316 (3)0.6975 (2)0.68598 (10)0.0494 (5)
C50.3793 (3)0.5805 (2)0.69774 (9)0.0431 (5)
C60.2847 (3)0.5129 (2)0.73515 (9)0.0438 (5)
C70.0990 (5)0.5179 (3)0.86177 (15)0.0929 (11)
H7A0.22830.50340.86900.139*
H7B0.02450.46500.88360.139*
H7C0.06930.59970.87050.139*
C80.3985 (4)0.7488 (2)0.63180 (11)0.0619 (7)
H8A0.47840.81710.63910.074*
H8B0.29120.77830.61200.074*
C90.5055 (4)0.6599 (2)0.59495 (10)0.0550 (6)
H90.47810.67980.55700.066*
C100.4513 (3)0.5280 (2)0.60475 (9)0.0445 (5)
C110.5026 (3)0.5014 (2)0.66483 (8)0.0405 (4)
C120.7122 (3)0.5215 (2)0.67525 (9)0.0492 (5)
H12A0.73750.51010.71360.059*
H12B0.78270.46180.65530.059*
C130.7765 (4)0.6444 (3)0.65865 (10)0.0615 (7)
H13A0.72840.70400.68370.074*
H13B0.91130.64820.65940.074*
C140.5448 (4)0.4336 (2)0.56775 (9)0.0530 (6)
H14A0.49720.44070.53100.064*
H14B0.67820.44660.56680.064*
C150.5020 (3)0.3077 (2)0.59042 (9)0.0464 (5)
H150.61470.27770.60830.056*
C160.3421 (3)0.31523 (19)0.63470 (9)0.0414 (5)
C170.4396 (3)0.37595 (19)0.68281 (8)0.0413 (5)
H170.54880.32850.69320.050*
C180.1924 (3)0.3955 (2)0.61281 (9)0.0460 (5)
H180.06960.37010.60960.055*
C190.2453 (3)0.5040 (2)0.59850 (9)0.0476 (5)
H190.16250.56150.58560.057*
C200.3673 (4)0.1229 (2)0.67858 (11)0.0580 (6)
H20A0.48820.11290.66270.087*
H20B0.30580.04650.68030.087*
H20C0.38020.15500.71450.087*
C210.4457 (3)0.2176 (2)0.54757 (10)0.0524 (6)
C220.4577 (6)0.0119 (3)0.52491 (12)0.0800 (9)
H22A0.3286−0.00570.53090.120*
H22B0.5310−0.05780.53310.120*
H22C0.47600.03400.48760.120*
C230.8136 (4)0.7260 (2)0.56914 (10)0.0583 (6)
N10.7083 (4)0.6693 (2)0.60326 (9)0.0710 (7)
N20.9105 (5)0.7735 (3)0.53969 (12)0.1007 (10)
O10.0625 (3)0.4968 (2)0.80685 (10)0.0924 (8)
O20.3187 (2)0.39121 (14)0.73017 (6)0.0487 (4)
O30.2608 (2)0.20286 (14)0.64642 (7)0.0496 (4)
O40.3500 (3)0.2385 (2)0.50871 (8)0.0753 (6)
O50.5139 (3)0.10971 (16)0.55952 (7)0.0611 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0440 (11)0.0639 (15)0.0594 (15)−0.0158 (11)0.0118 (11)−0.0196 (12)
C20.0411 (12)0.0655 (17)0.089 (2)−0.0039 (12)0.0063 (13)−0.0372 (15)
C30.0479 (13)0.0478 (13)0.0794 (18)0.0029 (11)−0.0166 (13)−0.0162 (12)
C40.0462 (12)0.0453 (12)0.0565 (14)−0.0042 (10)−0.0137 (11)−0.0037 (10)
C50.0380 (10)0.0512 (12)0.0400 (11)−0.0009 (9)−0.0052 (9)−0.0007 (9)
C60.0376 (10)0.0510 (12)0.0429 (11)−0.0012 (9)−0.0001 (9)−0.0062 (9)
C70.076 (2)0.110 (3)0.093 (3)−0.015 (2)−0.0151 (18)0.037 (2)
C80.0750 (17)0.0485 (13)0.0622 (16)−0.0068 (13)−0.0176 (14)0.0088 (12)
C90.0606 (15)0.0632 (15)0.0413 (12)−0.0127 (12)−0.0101 (11)0.0129 (10)
C100.0458 (11)0.0529 (12)0.0347 (10)−0.0025 (10)−0.0048 (9)0.0069 (9)
C110.0374 (10)0.0496 (11)0.0346 (10)0.0006 (9)−0.0008 (8)0.0036 (9)
C120.0375 (11)0.0722 (15)0.0379 (11)−0.0018 (10)−0.0014 (9)0.0052 (11)
C130.0485 (13)0.0891 (19)0.0469 (14)−0.0188 (13)−0.0052 (11)0.0121 (12)
C140.0539 (13)0.0704 (15)0.0348 (11)−0.0025 (12)0.0042 (10)0.0017 (10)
C150.0399 (11)0.0609 (13)0.0384 (11)0.0064 (10)0.0002 (9)−0.0008 (10)
C160.0379 (10)0.0469 (11)0.0395 (11)0.0033 (9)0.0016 (9)0.0026 (9)
C170.0388 (10)0.0502 (11)0.0348 (11)0.0079 (9)0.0018 (9)0.0037 (9)
C180.0358 (10)0.0554 (13)0.0467 (12)0.0034 (10)−0.0052 (9)−0.0014 (10)
C190.0465 (11)0.0509 (12)0.0454 (11)0.0058 (10)−0.0129 (10)0.0016 (10)
C200.0634 (15)0.0523 (13)0.0582 (15)0.0050 (12)0.0007 (12)0.0119 (12)
C210.0518 (13)0.0645 (15)0.0408 (12)0.0066 (12)0.0021 (10)−0.0039 (11)
C220.117 (3)0.0672 (17)0.0557 (16)0.0099 (19)0.0001 (17)−0.0166 (14)
C230.0749 (16)0.0556 (14)0.0443 (13)−0.0099 (13)0.0118 (12)−0.0001 (11)
N10.0676 (14)0.0989 (17)0.0467 (12)−0.0295 (13)−0.0056 (10)0.0215 (12)
N20.101 (2)0.135 (3)0.0660 (18)−0.026 (2)0.0247 (16)0.0189 (17)
O10.0946 (15)0.0935 (15)0.0891 (16)−0.0483 (13)0.0573 (13)−0.0418 (13)
O20.0554 (8)0.0505 (9)0.0403 (8)0.0008 (7)0.0127 (7)0.0014 (7)
O30.0454 (8)0.0485 (8)0.0548 (9)0.0022 (7)0.0009 (7)0.0038 (7)
O40.0877 (14)0.0788 (12)0.0596 (12)0.0128 (12)−0.0285 (11)−0.0099 (9)
O50.0748 (11)0.0627 (10)0.0459 (9)0.0161 (10)−0.0023 (9)−0.0078 (8)

Geometric parameters (Å, °)

C1—O11.376 (3)C13—N11.476 (3)
C1—C61.381 (3)C13—H13A0.97
C1—C21.389 (4)C13—H13B0.97
C2—C31.382 (4)C14—C151.541 (3)
C2—H20.93C14—H14A0.97
C3—C41.388 (4)C14—H14B0.97
C3—H30.93C15—C211.512 (3)
C4—C51.379 (3)C15—C161.587 (3)
C4—C81.530 (4)C15—H150.98
C5—C61.371 (3)C16—O31.411 (3)
C5—C111.489 (3)C16—C181.500 (3)
C6—O21.383 (3)C16—C171.534 (3)
C7—O11.398 (4)C17—O21.465 (2)
C7—H7A0.96C17—H170.98
C7—H7B0.96C18—C191.315 (3)
C7—H7C0.96C18—H180.93
C8—C91.548 (4)C19—H190.93
C8—H8A0.97C20—O31.417 (3)
C8—H8B0.97C20—H20A0.96
C9—N11.476 (4)C20—H20B0.96
C9—C101.539 (3)C20—H20C0.96
C9—H90.98C21—O41.202 (3)
C10—C191.513 (3)C21—O51.330 (3)
C10—C141.546 (3)C22—O51.441 (3)
C10—C111.554 (3)C22—H22A0.96
C11—C171.534 (3)C22—H22B0.96
C11—C121.545 (3)C22—H22C0.96
C12—C131.502 (4)C23—N21.137 (3)
C12—H12A0.97C23—N11.296 (3)
C12—H12B0.97
O1—C1—C6120.1 (2)N1—C13—H13B110.0
O1—C1—C2122.9 (2)C12—C13—H13B110.0
C6—C1—C2116.7 (2)H13A—C13—H13B108.3
C3—C2—C1122.1 (2)C15—C14—C10108.61 (18)
C3—C2—H2119.0C15—C14—H14A110.0
C1—C2—H2119.0C10—C14—H14A110.0
C2—C3—C4120.5 (2)C15—C14—H14B110.0
C2—C3—H3119.8C10—C14—H14B110.0
C4—C3—H3119.7H14A—C14—H14B108.3
C5—C4—C3116.5 (2)C21—C15—C14113.87 (19)
C5—C4—C8117.3 (2)C21—C15—C16108.75 (19)
C3—C4—C8125.3 (2)C14—C15—C16110.19 (18)
C6—C5—C4122.5 (2)C21—C15—H15107.9
C6—C5—C11109.66 (19)C14—C15—H15107.9
C4—C5—C11126.3 (2)C16—C15—H15107.9
C5—C6—C1120.6 (2)O3—C16—C18107.77 (17)
C5—C6—O2113.00 (18)O3—C16—C17114.96 (17)
C1—C6—O2126.1 (2)C18—C16—C17110.04 (17)
O1—C7—H7A109.5O3—C16—C15113.17 (17)
O1—C7—H7B109.5C18—C16—C15107.72 (18)
H7A—C7—H7B109.5C17—C16—C15102.94 (16)
O1—C7—H7C109.5O2—C17—C16113.33 (17)
H7A—C7—H7C109.5O2—C17—C11107.43 (16)
H7B—C7—H7C109.5C16—C17—C11108.24 (16)
C4—C8—C9115.4 (2)O2—C17—H17109.3
C4—C8—H8A108.4C16—C17—H17109.3
C9—C8—H8A108.4C11—C17—H17109.3
C4—C8—H8B108.4C19—C18—C16115.9 (2)
C9—C8—H8B108.4C19—C18—H18122.0
H8A—C8—H8B107.5C16—C18—H18122.0
N1—C9—C10107.2 (2)C18—C19—C10114.7 (2)
N1—C9—C8111.4 (2)C18—C19—H19122.6
C10—C9—C8113.1 (2)C10—C19—H19122.6
N1—C9—H9108.3O3—C20—H20A109.5
C10—C9—H9108.3O3—C20—H20B109.5
C8—C9—H9108.3H20A—C20—H20B109.5
C19—C10—C9113.6 (2)O3—C20—H20C109.5
C19—C10—C14104.20 (19)H20A—C20—H20C109.5
C9—C10—C14116.56 (19)H20B—C20—H20C109.5
C19—C10—C11107.17 (18)O4—C21—O5124.2 (2)
C9—C10—C11105.77 (18)O4—C21—C15125.5 (2)
C14—C10—C11109.19 (18)O5—C21—C15110.3 (2)
C5—C11—C17101.88 (17)O5—C22—H22A109.5
C5—C11—C12113.82 (19)O5—C22—H22B109.5
C17—C11—C12111.83 (18)H22A—C22—H22B109.5
C5—C11—C10105.35 (18)O5—C22—H22C109.5
C17—C11—C10112.28 (18)H22A—C22—H22C109.5
C12—C11—C10111.22 (18)H22B—C22—H22C109.5
C13—C12—C11112.8 (2)N2—C23—N1177.9 (3)
C13—C12—H12A109.0C23—N1—C9121.4 (2)
C11—C12—H12A109.0C23—N1—C13119.8 (2)
C13—C12—H12B109.0C9—N1—C13116.3 (2)
C11—C12—H12B109.0C1—O1—C7116.9 (2)
H12A—C12—H12B107.8C6—O2—C17106.83 (16)
N1—C13—C12108.7 (2)C16—O3—C20116.63 (18)
N1—C13—H13A110.0C21—O5—C22116.6 (2)
C12—C13—H13A110.0
O1—C1—C2—C3−171.3 (3)C10—C14—C15—C1613.0 (2)
C6—C1—C2—C33.1 (4)C21—C15—C16—O338.3 (2)
C1—C2—C3—C4−4.1 (4)C14—C15—C16—O3163.76 (18)
C2—C3—C4—C5−2.6 (3)C21—C15—C16—C18−80.7 (2)
C2—C3—C4—C8166.4 (2)C14—C15—C16—C1844.7 (2)
C3—C4—C5—C610.5 (3)C21—C15—C16—C17162.99 (18)
C8—C4—C5—C6−159.4 (2)C14—C15—C16—C17−71.5 (2)
C3—C4—C5—C11175.0 (2)O3—C16—C17—O2−55.4 (2)
C8—C4—C5—C115.1 (3)C18—C16—C17—O266.5 (2)
C4—C5—C6—C1−11.9 (3)C15—C16—C17—O2−178.91 (16)
C11—C5—C6—C1−178.7 (2)O3—C16—C17—C11−174.44 (16)
C4—C5—C6—O2162.9 (2)C18—C16—C17—C11−52.6 (2)
C11—C5—C6—O2−3.9 (2)C15—C16—C17—C1162.0 (2)
O1—C1—C6—C5179.3 (2)C5—C11—C17—O2−10.9 (2)
C2—C1—C6—C54.7 (3)C12—C11—C17—O2111.03 (19)
O1—C1—C6—O25.2 (4)C10—C11—C17—O2−123.14 (18)
C2—C1—C6—O2−169.4 (2)C5—C11—C17—C16111.83 (18)
C5—C4—C8—C92.8 (3)C12—C11—C17—C16−126.25 (19)
C3—C4—C8—C9−166.1 (2)C10—C11—C17—C16−0.4 (2)
C4—C8—C9—N1−94.0 (3)O3—C16—C18—C19−178.53 (19)
C4—C8—C9—C1026.8 (3)C17—C16—C18—C1955.4 (3)
N1—C9—C10—C19179.2 (2)C15—C16—C18—C19−56.1 (3)
C8—C9—C10—C1956.0 (3)C16—C18—C19—C102.1 (3)
N1—C9—C10—C14−59.6 (3)C9—C10—C19—C18−172.41 (19)
C8—C9—C10—C14177.2 (2)C14—C10—C19—C1859.7 (3)
N1—C9—C10—C1161.9 (2)C11—C10—C19—C18−56.0 (3)
C8—C9—C10—C11−61.3 (2)C14—C15—C21—O4−38.1 (3)
C6—C5—C11—C179.0 (2)C16—C15—C21—O485.2 (3)
C4—C5—C11—C17−157.1 (2)C14—C15—C21—O5143.4 (2)
C6—C5—C11—C12−111.5 (2)C16—C15—C21—O5−93.3 (2)
C4—C5—C11—C1282.3 (3)N2—C23—N1—C9−154 (9)
C6—C5—C11—C10126.37 (19)N2—C23—N1—C1345 (9)
C4—C5—C11—C10−39.8 (3)C10—C9—N1—C23133.5 (3)
C19—C10—C11—C5−57.1 (2)C8—C9—N1—C23−102.3 (3)
C9—C10—C11—C564.4 (2)C10—C9—N1—C13−64.4 (3)
C14—C10—C11—C5−169.41 (18)C8—C9—N1—C1359.9 (3)
C19—C10—C11—C1753.0 (2)C12—C13—N1—C23−141.3 (3)
C9—C10—C11—C17174.49 (18)C12—C13—N1—C956.2 (3)
C14—C10—C11—C17−59.3 (2)C6—C1—O1—C7114.6 (3)
C19—C10—C11—C12179.1 (2)C2—C1—O1—C7−71.2 (4)
C9—C10—C11—C12−59.3 (2)C5—C6—O2—C17−3.5 (2)
C14—C10—C11—C1266.8 (2)C1—C6—O2—C17170.9 (2)
C5—C11—C12—C13−64.4 (3)C16—C17—O2—C6−110.32 (19)
C17—C11—C12—C13−179.20 (18)C11—C17—O2—C69.2 (2)
C10—C11—C12—C1354.4 (3)C18—C16—O3—C20−166.3 (2)
C11—C12—C13—N1−48.9 (3)C17—C16—O3—C20−43.2 (2)
C19—C10—C14—C15−64.4 (2)C15—C16—O3—C2074.7 (2)
C9—C10—C14—C15169.59 (19)O4—C21—O5—C22−4.0 (4)
C11—C10—C14—C1549.9 (2)C15—C21—O5—C22174.5 (2)
C10—C14—C15—C21135.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C20—H20A···O50.962.553.120 (3)118
C3—H3···O1i0.932.543.399 (3)153
C9—H9···N2ii0.982.493.467 (4)179

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2873).

References

  • Bentley, K. W. & Hardy, D. G. (1967). J. Am. Chem. Soc.89, 3267–3273. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Derrick, I., Coop, A., Al-Mousawi, S. M., Husbands, S. M. & Lewis, J. W. (2000). Tetrahedron Lett.41, 7571–7576.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hoskin, P. J. & Hanks, G. W. (1991). Drugs, 41, 326–338. [PubMed]
  • Lenz, G. R., Evans, S. M., Walters, D. E. & Hopfinger, A. J. (1986). Opiates, p. 65. London: Academic Press.
  • Liu, H., Zhong, B., Lui, C., Wu, B. & Gong, Z. (2005). Acta Chim. Slov.52, 80–85.
  • Marton, J., Miklos, S., Hosztafi, S. & Makleit, S. (1995). Synth. Commun.25, 829–848.
  • Odabaşoğlu, M., Yavuz, S., Pamir, Ö., Yıldırır, Y. & Büyükgüngör, O. (2009). Acta Cryst. E65, o864. [PMC free article] [PubMed]
  • Parrish, D., Chen, W., Coop, A. & Deschamps, J. R. (2004). Acta Cryst. E60, o793–o794.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Takemori, A. E., Hayashi, G. & Smits, S. E. (1972). Eur. J. Pharmacol.20, 85–91. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography