PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2156.
Published online 2009 August 15. doi:  10.1107/S1600536809031390
PMCID: PMC2970115

3-Methyl-1-(3-nitro­phen­yl)-5-phenyl-4,5-dihydro-1H-pyrazole

Abstract

In the title compound, C16H15N3O2, the planar [maximum deviation 0.156 (2) Å] pyrazoline ring is nearly coplanar with the 3-nitro­phenyl group and is approximately perpendicular to the phenyl ring, making dihedral angles of 3.80 (8) and 80.58 (10)°, respectively. Weak inter­molecular C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For applications of pyrazoline derivatives, see: Hatheway et al. (1978 [triangle]); Mahajan et al. (1991 [triangle]); Sobczak & Pawlaczyk (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2156-scheme1.jpg

Experimental

Crystal data

  • C16H15N3O2
  • M r = 281.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2156-efi1.jpg
  • a = 12.0173 (4) Å
  • b = 7.9324 (2) Å
  • c = 15.4944 (5) Å
  • β = 99.160 (2)°
  • V = 1458.18 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.36 × 0.18 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 10272 measured reflections
  • 3014 independent reflections
  • 1648 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.128
  • S = 1.00
  • 3014 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT (Bruker, 1998 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031390/xu2579sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031390/xu2579Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The derivatives of pyrazoline are mostly used in medicine, for example as antitumor (Hatheway et al., 1978), analgesic (Sobczak & Pawlaczyk, 1998), and antimicrobial (Mahajan et al., 1991) agents. As part of our work, the title compound is recently synthesized in our group and its crystal structure is reported here.

The pyrazoline ring and the 3-nitrophenyl ring are nearly coplanar, making a dihedral angle of 3.80 (8)°, while the dihedral angle between the pyrazoline ring and the C1-phenyl ring is 80.58 (10)° (Fig. 1). Intermolecular weak C—H···O hydrogen bonding is present in the crystal structure (Fig. 2 and Table 1).

Experimental

3-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The mixture was stirred for several min at 351 K, benzylideneacetone (1 mmol, 0.146 g) in ethanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, red single crystals were obtained after 2 d.

Refinement

All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 (methylene), 0.98 (methine) and 0.96 Å (methyl), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Figures

Fig. 1.
The molecular structure of the compound. The displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing of (I), showing the intermolecular hydrogen bonds as dashed lines.

Crystal data

C16H15N3O2F(000) = 592
Mr = 281.31Dx = 1.281 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1824 reflections
a = 12.0173 (4) Åθ = 2.6–26.5°
b = 7.9324 (2) ŵ = 0.09 mm1
c = 15.4944 (5) ÅT = 296 K
β = 99.160 (2)°Plate, red
V = 1458.18 (8) Å30.36 × 0.18 × 0.07 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
graphiteθmax = 26.5°, θmin = 2.0°
ω scansh = −14→15
10272 measured reflectionsk = −9→8
3014 independent reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0621P)2] where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C110.40009 (13)0.17187 (19)0.06087 (10)0.0433 (4)
N20.29773 (12)0.18897 (16)0.00749 (10)0.0578 (4)
C150.54447 (14)0.00161 (19)0.13960 (10)0.0454 (4)
C70.24060 (14)0.3481 (2)−0.02008 (11)0.0535 (5)
H7A0.28790.4156−0.05290.064*
C160.44095 (13)0.01314 (19)0.08743 (10)0.0425 (4)
H16A0.3991−0.08320.07030.051*
N10.23515 (12)0.04742 (18)−0.02230 (9)0.0548 (4)
C120.46581 (14)0.3125 (2)0.08824 (11)0.0519 (5)
H4A0.43950.41970.07140.062*
C60.21138 (13)0.4493 (2)0.05545 (11)0.0472 (4)
C130.56934 (14)0.2941 (2)0.13993 (12)0.0561 (5)
H13A0.61210.38950.15720.067*
N30.58488 (14)−0.1672 (2)0.16800 (11)0.0619 (4)
C10.21969 (14)0.6221 (2)0.05691 (13)0.0584 (5)
H1B0.24560.67770.01110.070*
O10.67543 (13)−0.17917 (18)0.21576 (11)0.0990 (6)
C140.61085 (14)0.1383 (2)0.16652 (11)0.0536 (5)
H14A0.68090.12590.20130.064*
O20.52813 (13)−0.28871 (17)0.14279 (11)0.0905 (5)
C50.17261 (15)0.3710 (3)0.12393 (13)0.0650 (5)
H5A0.16640.25420.12410.078*
C80.13676 (16)0.2830 (2)−0.08217 (13)0.0684 (6)
H8A0.06750.3240−0.06490.082*
H8B0.13910.3168−0.14200.082*
C90.14648 (15)0.0972 (2)−0.07219 (12)0.0591 (5)
C40.14288 (17)0.4619 (3)0.19199 (14)0.0777 (6)
H12A0.11660.40650.23770.093*
C20.19016 (16)0.7141 (3)0.12524 (16)0.0729 (6)
H2A0.19630.83100.12550.088*
C30.15175 (17)0.6329 (4)0.19279 (14)0.0777 (6)
H3A0.13180.69450.23910.093*
C100.06227 (18)−0.0247 (3)−0.11675 (16)0.0957 (8)
H10A0.0856−0.1375−0.10020.144*
H10B0.0567−0.0124−0.17890.144*
H10C−0.0098−0.0029−0.09990.144*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C110.0398 (10)0.0436 (10)0.0470 (10)0.0024 (8)0.0079 (8)−0.0019 (8)
N20.0495 (9)0.0418 (8)0.0756 (11)0.0045 (7)−0.0098 (8)−0.0003 (7)
C150.0460 (10)0.0452 (10)0.0457 (10)0.0054 (8)0.0097 (8)0.0021 (8)
C70.0505 (11)0.0526 (11)0.0567 (11)0.0095 (9)0.0057 (9)0.0079 (9)
C160.0402 (10)0.0422 (10)0.0451 (10)−0.0005 (7)0.0066 (8)−0.0016 (7)
N10.0486 (9)0.0553 (9)0.0586 (10)−0.0003 (7)0.0028 (8)−0.0044 (7)
C120.0524 (11)0.0414 (10)0.0613 (12)0.0019 (8)0.0072 (9)−0.0004 (8)
C60.0393 (10)0.0503 (11)0.0509 (11)0.0056 (8)0.0044 (8)0.0076 (8)
C130.0483 (11)0.0520 (11)0.0669 (13)−0.0111 (9)0.0059 (10)−0.0090 (9)
N30.0575 (10)0.0596 (11)0.0673 (11)0.0122 (9)0.0054 (9)0.0115 (9)
C10.0515 (11)0.0548 (12)0.0698 (13)0.0035 (9)0.0127 (10)0.0041 (10)
O10.0680 (10)0.0945 (12)0.1213 (13)0.0163 (8)−0.0254 (10)0.0320 (9)
C140.0414 (10)0.0600 (12)0.0576 (12)0.0024 (9)0.0020 (9)−0.0024 (9)
O20.0924 (11)0.0471 (8)0.1237 (14)0.0038 (8)−0.0081 (10)0.0076 (8)
C50.0650 (13)0.0650 (12)0.0661 (13)0.0024 (10)0.0139 (11)0.0113 (11)
C80.0642 (13)0.0779 (14)0.0579 (13)0.0157 (11)−0.0064 (10)−0.0013 (10)
C90.0494 (11)0.0694 (13)0.0555 (12)0.0051 (10)−0.0012 (10)−0.0062 (10)
C40.0732 (15)0.1004 (19)0.0631 (15)0.0073 (13)0.0215 (12)0.0091 (13)
C20.0633 (13)0.0636 (13)0.0913 (17)0.0054 (11)0.0102 (13)−0.0148 (12)
C30.0609 (13)0.1077 (19)0.0644 (15)0.0120 (13)0.0094 (11)−0.0195 (14)
C100.0690 (15)0.1000 (18)0.1050 (19)−0.0036 (12)−0.0269 (13)−0.0190 (14)

Geometric parameters (Å, °)

C11—N21.375 (2)N3—O21.2093 (18)
C11—C161.390 (2)N3—O11.2185 (19)
C11—C121.393 (2)C1—C21.378 (3)
N2—N11.3888 (18)C1—H1B0.9300
N2—C71.4678 (19)C14—H14A0.9300
C15—C141.371 (2)C5—C41.371 (3)
C15—C161.374 (2)C5—H5A0.9300
C15—N31.468 (2)C8—C91.485 (3)
C7—C61.506 (2)C8—H8A0.9700
C7—C81.539 (2)C8—H8B0.9700
C7—H7A0.9800C9—C101.488 (3)
C16—H16A0.9300C4—C31.360 (3)
N1—C91.275 (2)C4—H12A0.9300
C12—C131.376 (2)C2—C31.370 (3)
C12—H4A0.9300C2—H2A0.9300
C6—C51.373 (2)C3—H3A0.9300
C6—C11.374 (2)C10—H10A0.9600
C13—C141.371 (2)C10—H10B0.9600
C13—H13A0.9300C10—H10C0.9600
N2—C11—C16120.49 (14)C6—C1—H1B119.5
N2—C11—C12120.89 (14)C2—C1—H1B119.5
C16—C11—C12118.61 (15)C15—C14—C13117.08 (16)
C11—N2—N1120.35 (13)C15—C14—H14A121.5
C11—N2—C7126.29 (14)C13—C14—H14A121.5
N1—N2—C7113.28 (13)C4—C5—C6121.3 (2)
C14—C15—C16123.67 (15)C4—C5—H5A119.4
C14—C15—N3118.79 (15)C6—C5—H5A119.4
C16—C15—N3117.54 (15)C9—C8—C7103.05 (14)
N2—C7—C6112.85 (14)C9—C8—H8A111.2
N2—C7—C8100.85 (13)C7—C8—H8A111.2
C6—C7—C8113.49 (13)C9—C8—H8B111.2
N2—C7—H7A109.8C7—C8—H8B111.2
C6—C7—H7A109.8H8A—C8—H8B109.1
C8—C7—H7A109.8N1—C9—C8114.49 (16)
C15—C16—C11118.59 (15)N1—C9—C10121.42 (18)
C15—C16—H16A120.7C8—C9—C10124.09 (17)
C11—C16—H16A120.7C3—C4—C5120.1 (2)
C9—N1—N2107.90 (15)C3—C4—H12A120.0
C13—C12—C11120.57 (15)C5—C4—H12A120.0
C13—C12—H4A119.7C3—C2—C1119.8 (2)
C11—C12—H4A119.7C3—C2—H2A120.1
C5—C6—C1118.09 (17)C1—C2—H2A120.1
C5—C6—C7120.62 (16)C4—C3—C2119.8 (2)
C1—C6—C7121.27 (16)C4—C3—H3A120.1
C14—C13—C12121.49 (16)C2—C3—H3A120.1
C14—C13—H13A119.3C9—C10—H10A109.5
C12—C13—H13A119.3C9—C10—H10B109.5
O2—N3—O1122.49 (16)H10A—C10—H10B109.5
O2—N3—C15119.20 (15)C9—C10—H10C109.5
O1—N3—C15118.31 (16)H10A—C10—H10C109.5
C6—C1—C2120.93 (19)H10B—C10—H10C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.932.513.245 (2)136

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2579).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem.21, 563–567. [PubMed]
  • Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–246.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sobczak, H. & Pawlaczyk, J. (1998). Acta Pol. Pharm.55, 279–283. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography