PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2180–o2181.
Published online 2009 August 19. doi:  10.1107/S1600536809031730
PMCID: PMC2970112

dl-Asparaginium nitrate

Abstract

In the title compound, C4H9N2O3 +·NO3 , alternatively called (1RS)-2-carbamoyl-1-carboxy­ethanaminium nitrate, the asymmetric unit comprises one asparaginium cation and one nitrate anion. The strongest cation–cation O—H(...)O hydrogen bond in the structure, together with other strong cation–cation N—H(...)O hydrogen bonds, generates a succession of infinite chains of R 2 2(8) rings along the b axis. Additional cation–cation C—H(...)O hydrogen bonds link these chains into two-dimensional layers formed by alternating R 4 4(24) and R 4 2(12) rings. Connections between these layers are provided by the strong cation–anion N—H(...)O hydrogen bonds, as well as by one weak C—H(...)O inter­action, thus forming a three-dimensional network. Some of the cation–anion N—H(...)O hydrogen bonds are bifurcated of the type D—H(...)(A 1,A 2).

Related literature

dl-Asparagine has been used in growth media for bacteria, see: Gerhardt & Wilson (1948 [triangle]); Palleroni et al. (1973 [triangle]); Wagtendonk et al. (1963 [triangle]). For related structures, see Aarthy et al. (2005 [triangle]); Anitha et al. (2005 [triangle]); Arnold et al. (2000 [triangle]); Flaig et al. (2002 [triangle]); Kartha & de Vries (1961 [triangle]); Ramanadham et al. (1972 [triangle]); Smirnova et al. (1990 [triangle]); Verbist et al. (1972 [triangle]); Wang et al. (1985 [triangle]); Weisinger-Lewin et al. (1989 [triangle]); Yamada et al. (2007 [triangle]). For hydrogen bonding, see: Desiraju & Steiner (1999 [triangle]). For hydrogen-bond morifs, see: Bernstein et al. (1995 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2180-scheme1.jpg

Experimental

Crystal data

  • C4H9N2O3 +·NO3
  • M r = 195.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2180-efi11.jpg
  • a = 7.923 (2) Å
  • b = 9.608 (2) Å
  • c = 10.613 (3) Å
  • β = 107.105 (2)°
  • V = 772.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 100 K
  • 0.30 × 0.20 × 0.09 mm

Data collection

  • Oxford Diffraction Xcalibur–Sapphire2 CCD diffractometer
  • Absorption correction: gaussian (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.966, T max = 0.991
  • 19446 measured reflections
  • 2236 independent reflections
  • 1804 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.087
  • S = 1.07
  • 2236 reflections
  • 136 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031730/fb2157sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031730/fb2157Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.

supplementary crystallographic information

Comment

DL-asparagine, the racemic melange of the aparagine L and D-enantiomers, has been used in growth-media for bacteria-growth such as Brucellae (Gerhardt & Wilson, 1948), Pseudomonas fluorescens (Palleroni et al., 1973) and lambda particles (van Wagtendonk et al., 1963).

The crystal structures of the L-enantiomer compounds are reported most often, indeed, L-asparagine monohydrate, determined by X-ray or neutron diffraction, has been reported for the first time by Kartha & de Vries (1961) and then reported, i.a., by Verbist et al. (1972); Ramanadham et al. (1972); Wang et al. (1985); Weisinger-Lewin et al. (1989); Smirnova et al. (1990); Arnold et al. (2000); Flaig et al. (2002).

Recently, Yamada et al. (2007) reported the crystal structure of the anhydrous L-asparagine and Aarthy et al. (2005) reported the crystal structure of L-asparaginium nitrate.

In the present study, the single-crystal structure determination of anhydrous DL-asparaginium nitrate as a part of the work of our team is reported. The asymmetric unit is formed by the monoprotonated asparaginium cation (C4H9O3N2)+ and the nitrate anion (NO3)- (Fig. 1). Observation of the build-up of the electron density in the vicinity of O1, the different C-O bond distances [1.3116 (16) and 1.2143 (15) Å ] and the pertinent O-C-O bond angle [126.2 (1)°] clearly confirm the protonation of the carboxyl group.

The crystal structure is stabilized by O-H···O, N-H···O and C-H···O, cation-cation (Fig. 2) and cation-anion (Fig. 3) hydrogen bonds. The O1-H1···O3 cation-cation hydrogen bond is the strongest one observed in the title structure at all (Tab. 1).

The O1-H1···O3 and N3-H5N···O2 cation-cation hydrogen bonds generate a succession of infinite chains composed of R22(8) rings that propagate in a zig-zagged way along the axis b (Fig. 4). These chains are interconnected by C3-H4···O2 hydrogen bonds (Tab. 1), giving rise to two-dimensional cationic layers which are formed by a succession of alternating R42(12) and R44(24) rings (Fig. 4). The former ring includes also N3-H5N···O2 while the latter O1-H1···O3 intermolecular hydrogen bonds (see Tab. 1). The cation-anion hydrogen bonds interlink the cationic layers into a three-dimensional network (Fig. 5). Some of the cation-anion N—H···O hydrogen bonds are bifurcated of the type D-H···(A1,A2) (Desiraju & Steiner, 1999).

The backbone conformation of the cation asparaginium is stabilized by the intramolecular N2-H2N···O3 interaction, with the S(6) motif (Bernstein et al., 1995), between the O atom of the amide group as an acceptor and one of the H atoms of the -NH3 group. The pertinent angle N2-H2N···O3 is quite acute (Tab. 1). A similiar intramolecular interaction is observed in L-asparaginium picrate (Anitha et al., 2005) and L-asparaginium nitrate (Aarthy et al., 2005).

In this study the graph-set suggested by Etter et al. (1990) and the quantitative graph set descriptor Gad(n) (Bernstein et al., 1995) are used in order to describe the hydrogen bonds in the title structure (Tab. 1). The unitary graph set is composed of ten motifs: N1 = C(7)C(7)S(6)C(5)DDDDDD where C(7) applies for O1—H···O3 and N3—H5N···O2; S(6) for N2—H2N···O3 and C(5) for C3—H4···O2 while the rest of the motifs D refer to the cation-anion interactions.

Experimental

The title compound was prepared by heating of a mixture of DL-asparagine monohydrate of purity 98 % (Alfa Aesar) and nitric acid. This mixture was obtained by dissolution and agitation for 20 minutes of 0.75 g of the DL-asparagine monohydrate in 15 ml of water at 25°C followed by addition of 15 ml of 1 M nitric acid. Colourless needle crystals with approximate dimensions 0.30 x 0.20 x 0.10 mm were obtained by evaporation of the solution at room temperature in the course of a few weeks.

Refinement

All the H atoms were located in the difference electron density maps. All the H atoms attached to C were treated as riding with C-H = 1.00 Å (methine) or 0.99 Å (methylene) with UisoH = 1.2UeqC. The coordinate parameters of the H atoms attached to N or O were freely refined with UisoH = 1.2UeqN and UisoH = 1.5UeqO.

Figures

Fig. 1.
The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level
Fig. 2.
The cation-cation hydrogen bonds. Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (iv) -x+1, y-1/2, -z+3/2; (v) x, -y+3/2, z-1/2
Fig. 3.
The cation-anion hydrogen bonds. Symmetry codes: (ii) -x, y+1/2, -z+3/2; (iii) -x, -y+1, -z+1; (v) x, -y+3/2, z-1/2
Fig. 4.
Hydrogen bonding cation-cation infinit chains within the DL-asparaginium layer. The axis a is directed downwards from the projection plane.
Fig. 5.
Connection between the cationic layers via cation-anion H-bonds

Crystal data

C4H9N2O3+·NO3F(000) = 408
Mr = 195.14Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19446 reflections
a = 7.923 (2) Åθ = 2.9–30.0°
b = 9.608 (2) ŵ = 0.16 mm1
c = 10.613 (3) ÅT = 100 K
β = 107.105 (2)°Prism, colorless
V = 772.2 (3) Å30.3 × 0.2 × 0.09 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur–Sapphire2 CCD diffractometer2236 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: gaussian (CrysAlis RED; Oxford Diffraction, 2008)h = −11→11
Tmin = 0.966, Tmax = 0.991k = −13→13
19446 measured reflectionsl = −11→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0466P)2 + 0.1163P] where P = (Fo2 + 2Fc2)/3
2236 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.35366 (11)1.04131 (8)0.62255 (8)0.0171 (2)
H10.403 (2)1.0991 (17)0.6820 (16)0.0256*
O20.21545 (11)0.96178 (8)0.76602 (8)0.0150 (2)
O30.46509 (10)0.71971 (8)0.71175 (8)0.0144 (2)
N20.07508 (13)0.74096 (10)0.61109 (10)0.0133 (3)
H1N0.0164 (19)0.7751 (15)0.6650 (14)0.0158*
H2N0.1526 (19)0.6789 (15)0.6612 (14)0.0158*
H3N0.0026 (19)0.6923 (15)0.5440 (14)0.0158*
N30.57418 (14)0.66187 (11)0.54436 (11)0.0172 (3)
H4N0.5623 (19)0.6635 (16)0.4621 (16)0.0207*
H5N0.659 (2)0.6100 (16)0.5979 (15)0.0207*
C10.24959 (14)0.95636 (10)0.66154 (11)0.0118 (3)
C20.16701 (14)0.84965 (10)0.55565 (10)0.0111 (3)
H20.075260.898880.484450.0134*
C30.29888 (14)0.78621 (11)0.49291 (10)0.0129 (3)
H30.342260.859860.444990.0154*
H40.237980.715210.427750.0154*
C40.45449 (14)0.71962 (10)0.59194 (11)0.0117 (3)
O40.10171 (10)0.28059 (8)0.69646 (8)0.0164 (2)
O50.18243 (12)0.48467 (9)0.78126 (9)0.0228 (3)
O60.17667 (12)0.44085 (9)0.57939 (9)0.0204 (3)
N10.15474 (12)0.40279 (9)0.68709 (9)0.0132 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0219 (4)0.0149 (4)0.0156 (4)−0.0083 (3)0.0074 (3)−0.0035 (3)
O20.0182 (4)0.0129 (3)0.0149 (4)−0.0026 (3)0.0064 (3)−0.0031 (3)
O30.0147 (4)0.0153 (4)0.0131 (4)0.0045 (3)0.0040 (3)0.0021 (3)
N20.0129 (4)0.0116 (4)0.0153 (5)−0.0020 (3)0.0042 (4)−0.0034 (3)
N30.0171 (5)0.0193 (5)0.0168 (5)0.0066 (4)0.0074 (4)0.0029 (4)
C10.0105 (5)0.0090 (4)0.0144 (5)0.0017 (3)0.0012 (4)0.0007 (4)
C20.0113 (5)0.0096 (4)0.0117 (5)0.0008 (3)0.0021 (4)−0.0004 (3)
C30.0139 (5)0.0125 (4)0.0117 (5)0.0029 (4)0.0030 (4)0.0000 (4)
C40.0119 (5)0.0083 (4)0.0151 (5)−0.0003 (3)0.0043 (4)0.0010 (4)
O40.0158 (4)0.0115 (4)0.0222 (4)−0.0018 (3)0.0061 (3)−0.0004 (3)
O50.0249 (5)0.0228 (4)0.0197 (4)−0.0048 (3)0.0049 (4)−0.0115 (3)
O60.0266 (5)0.0189 (4)0.0205 (4)0.0002 (3)0.0142 (4)0.0018 (3)
N10.0104 (4)0.0127 (4)0.0164 (5)−0.0004 (3)0.0037 (3)−0.0027 (3)

Geometric parameters (Å, °)

O1—C11.3107 (16)N2—H3N0.903 (14)
O2—C11.2173 (16)N2—H2N0.907 (15)
O3—C41.2494 (16)N3—H5N0.893 (16)
O1—H10.845 (16)N3—H4N0.850 (16)
O4—N11.2608 (14)C1—C21.5198 (17)
O5—N11.2397 (15)C2—C31.5218 (18)
O6—N11.2599 (15)C3—C41.5072 (18)
N2—C21.4898 (17)C2—H21.0000
N3—C41.3205 (18)C3—H30.9900
N2—H1N0.899 (15)C3—H40.9900
C1—O1—H1111.7 (11)C1—C2—C3113.09 (9)
H2N—N2—H3N106.6 (13)N2—C2—C3111.74 (8)
C2—N2—H2N111.5 (10)N2—C2—C1109.57 (9)
H1N—N2—H3N111.3 (14)C2—C3—C4113.02 (9)
C2—N2—H1N113.6 (9)N3—C4—C3116.35 (10)
C2—N2—H3N108.9 (9)O3—C4—N3123.27 (11)
H1N—N2—H2N104.7 (13)O3—C4—C3120.38 (10)
C4—N3—H4N120.7 (11)N2—C2—H2107.00
H4N—N3—H5N119.9 (15)C1—C2—H2107.00
C4—N3—H5N118.8 (10)C3—C2—H2107.00
O4—N1—O6118.68 (9)C2—C3—H4109.00
O5—N1—O6120.55 (9)H3—C3—H4108.00
O4—N1—O5120.76 (9)C4—C3—H3109.00
O1—C1—C2111.14 (9)C4—C3—H4109.00
O1—C1—O2126.15 (10)C2—C3—H3109.00
O2—C1—C2122.67 (10)
O1—C1—C2—N2170.37 (9)N2—C2—C3—C4−67.79 (11)
O1—C1—C2—C345.00 (12)C1—C2—C3—C456.40 (11)
O2—C1—C2—N2−11.93 (15)C2—C3—C4—O30.35 (14)
O2—C1—C2—C3−137.30 (11)C2—C3—C4—N3179.75 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.845 (16)1.736 (16)2.571 (2)169.0 (17)
N2—H1N···O4ii0.899 (15)1.962 (15)2.822 (2)159.6 (13)
N2—H2N···O30.907 (15)2.406 (16)2.965 (2)119.9 (12)
N2—H2N···O50.907 (15)2.233 (14)3.024 (2)145.4 (13)
N2—H2N···O60.907 (15)2.474 (15)3.039 (2)120.7 (11)
N2—H3N···O4iii0.903 (14)2.454 (14)3.157 (2)135.0 (12)
N2—H3N···O6iii0.903 (14)2.068 (15)2.957 (2)168.3 (14)
N3—H5N···O2iv0.893 (16)2.064 (15)2.924 (2)161.4 (15)
C3—H3···O5v0.99002.36003.086 (2)130.00
C3—H4···O2v0.99002.39003.313 (2)156.00

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x, y+1/2, −z+3/2; (iii) −x, −y+1, −z+1; (iv) −x+1, y−1/2, −z+3/2; (v) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2157).

References

  • Aarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042–o2044.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Anitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1463–o1465.
  • Arnold, W. D., Sanders, L. K., McMahon, M. T., Volkov, A. V., Wu, G., Coppens, P., Wilson, S. R., Godbout, N. & Oldfield, E. (2000). J. Am. Chem. Soc.122, 4708-4717.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 66. International Union of Crystallography Monographs on Crystallography. New York: Oxford University Press Inc.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flaig, R., Koritsanszky, T., Dittrich, B., Wagner, A. & Luger, P. (2002). J. Am. Chem. Soc.124, 3407–3417. [PubMed]
  • Gerhardt, P. & Wilson, J. B. (1948). J. Bacteriol.56, 17-24. [PMC free article] [PubMed]
  • Kartha, G. & de Vries, A. (1961). Nature (London), 192, 862–863. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Wrocław, Poland.
  • Palleroni, N. J., Kunisawa, R., Contopoulou, R. & Doudoroff, M. (1973). Int. J. Syst. Bacteriol.23, 333–339.
  • Ramanadham, M., Sikka, S. K. & Chidambaram, R. (1972). Acta Cryst. B28, 3000–3005.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smirnova, V. I., Sorokina, N. I., Safonov, A. A., Verin, I. A. & Tischenko, G. N. (1990). Kristallografiya, 35, 50–53.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Verbist, J. J., Lehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). Acta Cryst. B28, 3006–3013.
  • Wagtendonk, W. J. van, Clark, J. A. D. & Godoy, G. A. (1963). Proc. Natl Acad. Sci. USA, 50, 835–838. [PubMed]
  • Wang, J. L., Berkovitch-Yellin, Z. & Leiserowitz, L. (1985). Acta Cryst. B41, 341–348.
  • Weisinger-Lewin, Y., Frolow, F., McMullan, R. K., Koetzle, T. F., Lahav, M. & Leiserowitz, L. (1989). J. Am. Chem. Soc.111, 1035–1040.
  • Yamada, K., Hashizume, D., Shimizu, T. & Yokoyama, S. (2007). Acta Cryst. E63, o3802–o3803.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography