PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2122.
Published online 2009 August 8. doi:  10.1107/S1600536809030979
PMCID: PMC2970110

N,N′-Bis(1-ethynylcyclo­hexyl)­pyro­mellitic diimide

Abstract

The title compound, C26H24N2O4, consists of a symmetrical mol­ecule that lies across a crystallographic inversion centre. The C—C distance in the triple bond is 1.188 (2) Å and there is also an inter­molecular C—H(...)O contact from a terminal acetyl­ene C—H to one of the dimiide O atoms [3.4349 (19) Å].

Related literature

For literature relating to the oxidative coupling of terminal acetyl­enes, see: Anderson, Anderson & Sanders (1995 [triangle]); Anderson, Walter et al. (1995 [triangle]); Hamilton et al. (1998 [triangle]); Raehm et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2122-scheme1.jpg

Experimental

Crystal data

  • C26H24N2O4
  • M r = 428.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2122-efi1.jpg
  • a = 13.1774 (3) Å
  • b = 7.1519 (1) Å
  • c = 11.8104 (3) Å
  • β = 112.495 (1)°
  • V = 1028.36 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 120 K
  • 0.40 × 0.35 × 0.20 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.963, T max = 0.982
  • 12939 measured reflections
  • 2022 independent reflections
  • 1898 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.158
  • S = 1.29
  • 2022 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.80 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON97 (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030979/zs2003sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030979/zs2003Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Science Foundation (award No. 0314514), the Camille and Henry Dreyfus Foundation (Henry Dreyfus Teacher Scholar Award to DGH, 2005–2010), and the EPSRC National Crystallography Service (University of Southampton, England) for their support of this work.

supplementary crystallographic information

Comment

The oxidative coupling of terminal acetylenes has proven to be a valuable architectural tool in the preparation of large macrocycles, especially when coupled to a templating mechanism to organize the premacrocycle components (Anderson, Anderson & Sanders, 1995). In this manner some remarkable structures have been assembled with admirable efficiency, given the entropic handicap imposed on the synthesis of large ring macrocycles (Anderson, Walter et al., 1995). One area in which a template greatly favors cyclization, and subsequently forms an integral part of the product structure, is in the synthesis of interlocked molecular compounds (catenanes and rotaxanes, Hamilton et al., 1998). Numerous systems have been reported that rely on the attractive interaction between π-electron deficient aromatic diimides and π-electron rich aromatic diethers to establish the desired templating effect (Raehm et al., 2002). In many of these instances the diimide component was equipped with terminal acetylenes, susbsequent oxidative coupling of which afforded the desired interlocked molecular systems. The title compound was prepared to address a key shortcoming of many acetylenic diimides of this type, namely their relatively low solubility in most organic solvents, in particular those in which the templating effects, so crucial to macrocycle synthesis, would be most effectively deployed. The presence of cyclohexyl substituents at the junctures of the diimide core with the acetylene substituents engendered high organic solvent solubility while retaining the key structural features required of the diimide unit. Reported here is the structure of the title compound (I), which is a symmetrical molecule that lies across a crystallographic inversion centre (Fig. 1), the asymmetric unit comprising half of the molecule. With such a simple molecule there are very few distinct features to report although it is worth mentioning that the C—C distance in the triple bond is 1.188 (2) Å. There is also an intermolecular C—H···O contact between the terminal acetylene C—H and one of the dimiide O atoms (Table 1).

Experimental

To a stirred solution of 1,2,4,5-benzenetetracarboxylic dianhydride (2.18 g, 10 mmol) in dry THF (20 mL) was added a solution of 1-ethynylcyclohexylamine (2.50 g, 2.74 ml, 20 mmol) in dry THF (10 ml). After 6 h the reaction was evaporated to give a white foam to which was added acetic anhydride (30 ml). After heating at 130° C for 2 h the reaction was cooled to room temperature and poured into vigorously stirred icecold water. The precipitated solids were collected at the pump, washed with cold water, and recrystallized from aqueous DMF to afford pale yellow crystals of the title compound (0.71 g, 17%): m.p. 219–220° C; 13C NMR (100 MHz, CDCl3) δ 166.5, 138.0, 119.0, 83.0, 75.0, 60.0, 36.0, 25.0, 23.0; 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 2H), 2.65 (s, 2H), 2.56–2.45, 2.44–2.29, 1.90–1.60, 1.40–1.20 (4 x multiplet, 20H). Single crystals of suitable quality for structure determination were grown by vapor diffusion of water into a DMF solution of the title compound.

Refinement

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.95 (CH) and 0.99Å (CH2). The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom. The large maximum and minimum residual electron density peaks [0.60 eÅ-3, 1.45 Å from C13 and -0.80 eÅ-3, 1.30 Å from H1 respectively] are unexplained.

Figures

Fig. 1.
Molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code (a): -x, -y + 1, -z + 1.

Crystal data

C26H24N2O4F(000) = 452
Mr = 428.47Dx = 1.384 Mg m3
Monoclinic, P21/cMelting point = 492–493 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.1774 (3) ÅCell parameters from 2528 reflections
b = 7.1519 (1) Åθ = 2.9–27.5°
c = 11.8104 (3) ŵ = 0.09 mm1
β = 112.495 (1)°T = 120 K
V = 1028.36 (4) Å3Prism, colourless
Z = 20.40 × 0.35 × 0.20 mm

Data collection

Bruker–Nonius KappaCCD diffractometer2022 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1898 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.033
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
[var phi] & ω scansh = −16→16
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −8→8
Tmin = 0.963, Tmax = 0.982l = −13→14
12939 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.158w = 1/[σ2(Fo2) + (0.091P)2 + 0.2895P] where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
2022 reflectionsΔρmax = 0.60 e Å3
146 parametersΔρmin = −0.80 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.38 (3)

Special details

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.798007.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.06501 (9)0.08401 (16)0.34794 (11)0.0222 (4)
O20.22629 (9)0.66713 (15)0.40367 (11)0.0202 (4)
N10.16857 (10)0.35785 (17)0.36123 (11)0.0156 (4)
C20.08812 (12)0.2440 (2)0.37881 (13)0.0158 (4)
C30.03482 (12)0.3636 (2)0.44392 (13)0.0151 (4)
C40.07781 (12)0.5432 (2)0.45479 (13)0.0152 (4)
C50.16567 (12)0.5404 (2)0.40426 (13)0.0158 (4)
C6−0.04412 (12)0.3126 (2)0.48923 (13)0.0162 (4)
H1−0.07260.18930.48250.020*
C70.25590 (11)0.3002 (2)0.31631 (13)0.0150 (4)
C80.36865 (12)0.3129 (2)0.42496 (14)0.0169 (4)
H20.38120.44310.45570.021*
H30.36800.23160.49250.021*
C90.46204 (12)0.2530 (2)0.38642 (15)0.0208 (4)
H40.46760.34240.32510.026*
H50.53230.25630.45860.026*
C100.44355 (13)0.0570 (2)0.33209 (16)0.0250 (4)
H60.4485−0.03450.39690.031*
H70.50200.02720.30170.031*
C110.33156 (13)0.0392 (2)0.22690 (15)0.0210 (4)
H80.3201−0.09200.19790.026*
H90.32980.11910.15780.026*
C120.23911 (12)0.0975 (2)0.26781 (13)0.0169 (4)
H100.23760.01200.33310.021*
H110.16770.08750.19770.021*
C130.25281 (12)0.4268 (2)0.21565 (14)0.0178 (4)
C140.25817 (13)0.5152 (2)0.13290 (15)0.0211 (4)
H120.26250.58580.06680.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0244 (6)0.0177 (6)0.0284 (7)−0.0040 (4)0.0144 (5)−0.0057 (5)
O20.0223 (6)0.0163 (6)0.0262 (6)−0.0021 (4)0.0141 (5)−0.0008 (4)
N10.0160 (6)0.0157 (7)0.0173 (7)0.0003 (5)0.0089 (5)−0.0002 (5)
C20.0153 (7)0.0177 (8)0.0150 (7)0.0000 (5)0.0065 (6)0.0006 (6)
C30.0151 (7)0.0160 (8)0.0138 (7)0.0004 (5)0.0051 (6)0.0002 (5)
C40.0144 (7)0.0165 (8)0.0144 (7)0.0004 (5)0.0053 (6)0.0019 (5)
C50.0167 (7)0.0158 (8)0.0153 (8)0.0011 (5)0.0068 (6)0.0014 (5)
C60.0164 (7)0.0147 (7)0.0173 (8)−0.0008 (5)0.0064 (6)−0.0003 (6)
C70.0150 (7)0.0165 (8)0.0159 (7)0.0017 (5)0.0085 (6)0.0004 (6)
C80.0175 (8)0.0182 (8)0.0154 (8)0.0004 (5)0.0069 (6)−0.0006 (6)
C90.0161 (8)0.0257 (9)0.0211 (8)0.0010 (6)0.0078 (6)0.0001 (6)
C100.0205 (8)0.0294 (9)0.0251 (9)0.0066 (6)0.0086 (7)−0.0039 (7)
C110.0227 (8)0.0228 (9)0.0185 (8)0.0032 (6)0.0091 (6)−0.0038 (6)
C120.0181 (8)0.0174 (8)0.0159 (8)−0.0001 (6)0.0071 (6)−0.0010 (6)
C130.0159 (7)0.0189 (8)0.0196 (8)0.0027 (5)0.0081 (6)0.0001 (6)
C140.0219 (8)0.0224 (8)0.0217 (8)0.0040 (6)0.0111 (6)0.0048 (7)

Geometric parameters (Å, °)

O1—C21.2042 (19)C8—H20.99
O2—C51.2100 (18)C8—H30.99
N1—C51.4066 (19)C9—C101.522 (2)
N1—C21.4136 (19)C9—H40.99
N1—C71.4976 (18)C9—H50.99
C2—C31.493 (2)C10—C111.528 (2)
C3—C61.388 (2)C10—H60.99
C3—C41.389 (2)C10—H70.99
C4—C6i1.387 (2)C11—C121.530 (2)
C4—C51.492 (2)C11—H80.99
C6—C4i1.387 (2)C11—H90.99
C6—H10.95C12—H100.99
C7—C131.482 (2)C12—H110.99
C7—C121.543 (2)C13—C141.188 (2)
C7—C81.550 (2)C14—H120.95
C8—C91.528 (2)
C5—N1—C2110.85 (12)C7—C8—H3109.4
C5—N1—C7120.94 (12)H2—C8—H3108.0
C2—N1—C7127.92 (12)C10—C9—C8111.50 (13)
O1—C2—N1128.31 (14)C10—C9—H4109.3
O1—C2—C3125.88 (13)C8—C9—H4109.3
N1—C2—C3105.81 (12)C10—C9—H5109.3
C6—C3—C4123.13 (14)C8—C9—H5109.3
C6—C3—C2128.11 (14)H4—C9—H5108.0
C4—C3—C2108.76 (13)C9—C10—C11111.64 (13)
C3—C4—C6i122.54 (14)C9—C10—H6109.3
C3—C4—C5107.58 (13)C11—C10—H6109.3
C6i—C4—C5129.77 (14)C9—C10—H7109.3
O2—C5—N1125.73 (14)C11—C10—H7109.3
O2—C5—C4127.39 (14)H6—C10—H7108.0
N1—C5—C4106.83 (12)C10—C11—C12111.00 (12)
C3—C6—C4i114.32 (14)C10—C11—H8109.4
C3—C6—H1122.8C12—C11—H8109.4
C4i—C6—H1122.8C10—C11—H9109.4
C13—C7—N1109.08 (12)C12—C11—H9109.4
C13—C7—C12108.67 (12)H8—C11—H9108.0
N1—C7—C12111.69 (12)C11—C12—C7110.79 (12)
C13—C7—C8110.59 (12)C11—C12—H10109.5
N1—C7—C8108.28 (11)C7—C12—H10109.5
C12—C7—C8108.54 (12)C11—C12—H11109.5
C9—C8—C7111.30 (12)C7—C12—H11109.5
C9—C8—H2109.4H10—C12—H11108.1
C7—C8—H2109.4C14—C13—C7172.85 (16)
C9—C8—H3109.4C13—C14—H12180.0
C5—N1—C2—O1176.47 (15)C6i—C4—C5—N1178.17 (14)
C7—N1—C2—O1−9.7 (2)C4—C3—C6—C4i0.8 (2)
C5—N1—C2—C3−3.03 (16)C2—C3—C6—C4i−179.81 (14)
C7—N1—C2—C3170.78 (13)C5—N1—C7—C13−57.01 (17)
O1—C2—C3—C65.3 (3)C2—N1—C7—C13129.74 (15)
N1—C2—C3—C6−175.23 (14)C5—N1—C7—C12−177.14 (12)
O1—C2—C3—C4−175.27 (14)C2—N1—C7—C129.6 (2)
N1—C2—C3—C44.25 (16)C5—N1—C7—C863.40 (17)
C6—C3—C4—C6i−0.8 (3)C2—N1—C7—C8−109.86 (16)
C2—C3—C4—C6i179.65 (13)C13—C7—C8—C9−61.41 (16)
C6—C3—C4—C5175.74 (13)N1—C7—C8—C9179.13 (12)
C2—C3—C4—C5−3.77 (16)C12—C7—C8—C957.70 (16)
C2—N1—C5—O2178.38 (14)C7—C8—C9—C10−56.05 (17)
C7—N1—C5—O24.1 (2)C8—C9—C10—C1154.10 (18)
C2—N1—C5—C40.82 (16)C9—C10—C11—C12−54.98 (18)
C7—N1—C5—C4−173.49 (12)C10—C11—C12—C757.87 (17)
C3—C4—C5—O2−175.58 (15)C13—C7—C12—C1161.74 (15)
C6i—C4—C5—O20.7 (3)N1—C7—C12—C11−177.88 (11)
C3—C4—C5—N11.92 (16)C8—C7—C12—C11−58.57 (15)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H12···O2ii0.952.523.4349 (19)161

Symmetry codes: (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2003).

References

  • Anderson, S., Anderson, H. L. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2255–2267.
  • Anderson, H. L., Walter, C. J., VidalFerran, A., Hay, R. A., Lowden, P. A. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2275–2279.
  • Hamilton, D. G., Davies, J. E., Prodi, L. & Sanders, J. K. M. (1998). Chem. Eur. J.4, 608–620.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Raehm, L., Hamilton, D. G. & Sanders, J. K. M. (2002). Synlett, pp. 1743–1761.
  • Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography