PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): m1085.
Published online 2009 August 19. doi:  10.1107/S1600536809031754
PMCID: PMC2970105

{μ-trans-N,N′-Bis[(diphenyl­phosphan­yl)meth­yl]benzene-1,4-diamine-κ2 P:P′}bis­{(acetonitrile-κN)[dipyrido[3,2-a:2′,3′-c]phenazine-κ2 N 4,N 5]copper(I)} bis­(tetra­fluoridoborate)

Abstract

In the centrosymmetric dinuclear title compound, [Cu2(C2H3N)2(C18H10N4)2(C32H30N2P2)](BF4)2, the CuI centre is coordinated by two N atoms from a dipyridophenazine ligand, one P atom from an N,N′-bis­[(diphenyl­phosphan­yl)meth­yl]benzene-1,4-diamine (bpbda) ligand, and one N atom from an acetonitrile mol­ecule in a distorted tetra­hedral geometry. The bpbda ligand, lying on an inversion center, bridges two CuI centres into a Z-shaped complex. Intra­molecular π–π inter­actions between the dipyridophenazine ligand and the benzene ring of the bpbda ligand are observed [centroid–centroid distance = 3.459 (3) Å]. The crystal structure also involves inter­molecular π–π inter­actions between the dipyridophenazine ligands [centroid–centroid distance = 3.506 (3) Å], which lead to a one-dimensional supra­molecular structure.

Related literature

For general background to π–π inter­actions in chemistry and biochemistry, see: Aucott et al. (2002 [triangle]); Chipot et al. (1996 [triangle]); Saenger (1984 [triangle]); Wang et al. (2008 [triangle]); Waters (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1085-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2H3N)2(C18H10N4)2(C32H30N2P2)](BF4)2
  • M r = 1451.93
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1085-efi1.jpg
  • a = 12.1074 (3) Å
  • b = 12.3354 (2) Å
  • c = 12.6262 (3) Å
  • α = 84.905 (1)°
  • β = 68.250 (1)°
  • γ = 66.732 (1)°
  • V = 1605.35 (6) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 293 K
  • 0.32 × 0.24 × 0.20 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.786, T max = 0.858
  • 15862 measured reflections
  • 7288 independent reflections
  • 6153 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.119
  • S = 1.08
  • 7288 reflections
  • 443 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: CrystalClear (Rigaku 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809031754/hy2208sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031754/hy2208Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Guangxi Province (grant No. 0832100) and the Program for Excellent Talents in Guangxi Higher Education Institutions.

supplementary crystallographic information

Comment

π–π Stacking interactions between aromatic systems have been reported in many fields of chemistry and biochemistry (Aucott et al., 2002; Chipot et al., 1996). They play an important role in the structures of biological macromolecules (Saenger, 1984). For example, they are exploited for the intercalation of drugs into DNA (Waters, 2002). Information on the structures of copper(I) compouds with π–π stacking Interactions, which lead to infinite linear chain, continues to be reported (Wang et al., 2008). In the title binuclear copper(I) complex, the N,N'-bis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand, lying on an inversion center, links two CuI atoms through the P atoms (Fig.1). The CuI atom has a distorted tetrahedral coordination geometry. The structure involves intra- and intermolecular π–π interactions with centroid–centroid distances of 3.459 (3) and 3.506 (3) Å, respectively. The intermolecular π–π interactions connect the complex molecules into a one-dimensional supramolecular structure.

Experimental

CuBF4.4CH3CN (0.066 g, 0.2 mmol) was added with stirring to a solution of dipyrido[3,2 - a:2',3'-c]phenazine (0.056 g, 0.2 mmol) and N,N'-bis[(diphenylphosphanyl)methyl]benzene-1,4-diamine (0.050 g, 0.10 mmol) in DMF(10 ml). The resulting solution was allowed to stir for 2 h. Then by slow diffusion of diethyl ether into the solution, block red crystals were deposited in 6 d (yield: 60%).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH2), and 0.96 (CH3) Å and N—H = 0.86 Å, and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x, 1 - y, -z.]

Crystal data

[Cu2(C2H3N)2(C18H10N4)2(C32H30N2P2)](BF4)2Z = 1
Mr = 1451.93F(000) = 742
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1074 (3) ÅCell parameters from 12749 reflections
b = 12.3354 (2) Åθ = 2.6–27.5°
c = 12.6262 (3) ŵ = 0.79 mm1
α = 84.905 (1)°T = 293 K
β = 68.250 (1)°Block, red
γ = 66.732 (1)°0.32 × 0.24 × 0.20 mm
V = 1605.35 (6) Å3

Data collection

Rigaku Mercury CCD diffractometer7288 independent reflections
Radiation source: fine-focus sealed tube6153 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −15→15
Tmin = 0.786, Tmax = 0.858k = −14→16
15862 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0641P)2 + 1.098P] where P = (Fo2 + 2Fc2)/3
7288 reflections(Δ/σ)max = 0.001
443 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = −0.58 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.10933 (3)0.22834 (2)0.22835 (2)0.02592 (10)
P2−0.08284 (5)0.22819 (5)0.26979 (4)0.02005 (12)
N1−0.17869 (19)0.45511 (16)0.19707 (16)0.0271 (4)
H1A−0.22640.51130.24990.033*
N20.09991 (17)0.39591 (17)0.25741 (15)0.0243 (4)
N30.24317 (17)0.24169 (16)0.07427 (16)0.0235 (4)
N40.28443 (17)0.67402 (16)0.06715 (16)0.0235 (4)
N50.43829 (17)0.50979 (16)−0.12465 (15)0.0229 (4)
N60.2192 (2)0.1156 (2)0.3096 (2)0.0385 (5)
C1−0.0878 (2)0.47431 (18)0.09971 (18)0.0217 (4)
C2−0.0740 (2)0.58216 (18)0.09225 (18)0.0236 (4)
H2A−0.12310.63810.15390.028*
C30.0115 (2)0.60781 (18)−0.00522 (19)0.0239 (4)
H3A0.01810.6807−0.00770.029*
C4−0.1965 (2)0.34561 (19)0.21331 (19)0.0252 (4)
H4A−0.18720.31570.14070.030*
H4B−0.28410.36140.26570.030*
C5−0.1659 (2)0.24715 (19)0.42484 (18)0.0233 (4)
C6−0.2826 (3)0.3388 (2)0.4826 (2)0.0369 (5)
H6A−0.32460.39600.44200.044*
C7−0.3369 (3)0.3449 (3)0.6016 (2)0.0450 (7)
H7A−0.41550.40600.63990.054*
C8−0.2757 (3)0.2619 (3)0.6627 (2)0.0456 (7)
H8A−0.31240.26690.74210.055*
C9−0.1597 (3)0.1711 (3)0.6061 (2)0.0435 (6)
H9A−0.11840.11410.64730.052*
C10−0.1044 (3)0.1641 (2)0.4884 (2)0.0346 (5)
H10A−0.02520.10320.45110.042*
C11−0.1028 (2)0.09916 (18)0.23379 (18)0.0225 (4)
C120.0021 (2)0.0079 (2)0.1606 (2)0.0340 (5)
H12A0.08290.01210.13150.041*
C13−0.0124 (3)−0.0894 (2)0.1304 (3)0.0458 (7)
H13A0.0584−0.15000.08080.055*
C14−0.1316 (3)−0.0966 (2)0.1738 (3)0.0422 (6)
H14A−0.1408−0.16290.15470.051*
C15−0.2375 (3)−0.0056 (2)0.2456 (2)0.0394 (6)
H15A−0.3182−0.01010.27370.047*
C16−0.2240 (2)0.0923 (2)0.2760 (2)0.0314 (5)
H16A−0.29550.15350.32440.038*
C170.3083 (2)0.16616 (19)−0.0179 (2)0.0285 (5)
H17A0.29940.0942−0.01340.034*
C180.3884 (2)0.1896 (2)−0.1201 (2)0.0323 (5)
H18A0.43050.1351−0.18290.039*
C190.4051 (2)0.2946 (2)−0.12743 (19)0.0266 (4)
H19A0.45840.3120−0.19540.032*
C200.3411 (2)0.37443 (18)−0.03170 (18)0.0221 (4)
C210.25879 (19)0.34513 (18)0.06730 (17)0.0203 (4)
C220.35395 (19)0.48708 (18)−0.03267 (17)0.0203 (4)
C230.4471 (2)0.61545 (19)−0.12338 (18)0.0228 (4)
C240.5343 (2)0.6453 (2)−0.2205 (2)0.0284 (5)
H24A0.58460.5925−0.28460.034*
C250.5442 (2)0.7513 (2)−0.2196 (2)0.0319 (5)
H25A0.60070.7708−0.28360.038*
C260.4696 (2)0.8321 (2)−0.1225 (2)0.0321 (5)
H26A0.47930.9033−0.12280.039*
C270.3836 (2)0.8074 (2)−0.0283 (2)0.0293 (5)
H27A0.33440.86190.03460.035*
C280.3696 (2)0.69847 (19)−0.02664 (19)0.0233 (4)
C290.27640 (19)0.57019 (18)0.06501 (17)0.0208 (4)
C300.1861 (2)0.54033 (19)0.16478 (17)0.0213 (4)
C310.1007 (2)0.6216 (2)0.25919 (19)0.0272 (4)
H31A0.10130.69660.26070.033*
C320.0160 (2)0.5884 (2)0.3496 (2)0.0321 (5)
H32A−0.04280.64130.41220.039*
C330.0201 (2)0.4748 (2)0.34555 (19)0.0304 (5)
H33A−0.03590.45260.40770.037*
C340.18047 (19)0.42966 (19)0.16690 (17)0.0214 (4)
C350.2723 (3)0.0633 (3)0.3657 (3)0.0412 (6)
C360.3417 (4)−0.0034 (4)0.4389 (3)0.0687 (11)
H36A0.41980.00950.41990.103*
H36B0.3627−0.08620.42740.103*
H36C0.28820.02250.51740.103*
B10.3624 (3)0.2824 (3)0.5497 (3)0.0415 (7)
F10.3397 (4)0.3829 (3)0.5988 (3)0.1497 (16)
F20.2814 (2)0.2991 (4)0.4946 (2)0.1521 (18)
F30.3415 (4)0.2126 (3)0.6392 (3)0.1330 (13)
F40.4840 (2)0.2329 (3)0.47575 (19)0.0965 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02530 (15)0.03051 (16)0.02609 (16)−0.01641 (12)−0.00980 (11)0.01035 (11)
P20.0219 (3)0.0217 (3)0.0183 (3)−0.0115 (2)−0.0070 (2)0.00549 (19)
N10.0339 (10)0.0211 (8)0.0254 (10)−0.0120 (8)−0.0094 (8)0.0054 (7)
N20.0240 (9)0.0328 (10)0.0186 (9)−0.0149 (8)−0.0074 (7)0.0058 (7)
N30.0220 (8)0.0247 (9)0.0244 (9)−0.0103 (7)−0.0085 (7)0.0052 (7)
N40.0230 (9)0.0243 (9)0.0239 (9)−0.0097 (7)−0.0090 (7)0.0021 (7)
N50.0222 (8)0.0267 (9)0.0211 (9)−0.0115 (7)−0.0080 (7)0.0044 (7)
N60.0364 (11)0.0447 (12)0.0473 (13)−0.0256 (10)−0.0234 (10)0.0239 (10)
C10.0260 (10)0.0210 (9)0.0223 (10)−0.0100 (8)−0.0137 (8)0.0071 (8)
C20.0301 (11)0.0208 (10)0.0224 (10)−0.0094 (9)−0.0133 (9)0.0030 (8)
C30.0318 (11)0.0188 (9)0.0266 (11)−0.0118 (9)−0.0154 (9)0.0055 (8)
C40.0257 (10)0.0267 (10)0.0262 (11)−0.0122 (9)−0.0122 (9)0.0092 (8)
C50.0277 (10)0.0276 (10)0.0190 (10)−0.0173 (9)−0.0067 (8)0.0024 (8)
C60.0361 (13)0.0379 (13)0.0299 (13)−0.0126 (11)−0.0062 (10)−0.0005 (10)
C70.0399 (14)0.0537 (17)0.0315 (14)−0.0204 (13)0.0034 (11)−0.0143 (12)
C80.0491 (16)0.079 (2)0.0187 (12)−0.0401 (16)−0.0059 (11)−0.0017 (12)
C90.0506 (16)0.0622 (18)0.0270 (13)−0.0295 (15)−0.0184 (12)0.0127 (12)
C100.0368 (13)0.0413 (13)0.0247 (12)−0.0149 (11)−0.0114 (10)0.0063 (10)
C110.0289 (10)0.0214 (9)0.0192 (10)−0.0110 (9)−0.0102 (8)0.0037 (8)
C120.0303 (12)0.0300 (12)0.0368 (13)−0.0082 (10)−0.0103 (10)−0.0012 (10)
C130.0467 (16)0.0277 (12)0.0545 (18)−0.0031 (12)−0.0192 (14)−0.0102 (12)
C140.0585 (17)0.0266 (12)0.0513 (17)−0.0180 (12)−0.0291 (14)0.0012 (11)
C150.0446 (15)0.0397 (14)0.0466 (16)−0.0259 (12)−0.0208 (12)0.0062 (12)
C160.0318 (12)0.0314 (12)0.0311 (12)−0.0154 (10)−0.0076 (10)−0.0011 (9)
C170.0316 (11)0.0220 (10)0.0310 (12)−0.0119 (9)−0.0087 (10)0.0003 (9)
C180.0355 (12)0.0278 (11)0.0280 (12)−0.0121 (10)−0.0047 (10)−0.0041 (9)
C190.0264 (11)0.0287 (11)0.0206 (10)−0.0119 (9)−0.0026 (8)0.0002 (8)
C200.0210 (9)0.0235 (10)0.0215 (10)−0.0083 (8)−0.0084 (8)0.0032 (8)
C210.0205 (9)0.0220 (9)0.0205 (10)−0.0097 (8)−0.0089 (8)0.0039 (8)
C220.0193 (9)0.0231 (10)0.0194 (10)−0.0091 (8)−0.0076 (8)0.0035 (8)
C230.0208 (9)0.0272 (10)0.0229 (10)−0.0115 (8)−0.0095 (8)0.0059 (8)
C240.0257 (11)0.0339 (12)0.0255 (11)−0.0146 (10)−0.0070 (9)0.0060 (9)
C250.0296 (11)0.0371 (12)0.0339 (13)−0.0198 (10)−0.0120 (10)0.0128 (10)
C260.0317 (12)0.0269 (11)0.0421 (14)−0.0159 (10)−0.0151 (11)0.0095 (10)
C270.0288 (11)0.0241 (11)0.0352 (13)−0.0105 (9)−0.0122 (10)0.0029 (9)
C280.0213 (10)0.0242 (10)0.0268 (11)−0.0097 (8)−0.0113 (8)0.0058 (8)
C290.0200 (9)0.0235 (10)0.0198 (10)−0.0084 (8)−0.0085 (8)0.0026 (8)
C300.0210 (9)0.0258 (10)0.0185 (10)−0.0104 (8)−0.0079 (8)0.0029 (8)
C310.0275 (11)0.0306 (11)0.0230 (11)−0.0125 (9)−0.0068 (9)−0.0012 (9)
C320.0319 (12)0.0409 (13)0.0201 (11)−0.0161 (11)−0.0028 (9)−0.0030 (9)
C330.0289 (11)0.0440 (13)0.0176 (10)−0.0184 (11)−0.0035 (9)0.0031 (9)
C340.0189 (9)0.0291 (10)0.0180 (10)−0.0101 (8)−0.0085 (8)0.0049 (8)
C350.0403 (14)0.0471 (15)0.0474 (16)−0.0264 (13)−0.0222 (13)0.0224 (13)
C360.075 (2)0.082 (3)0.069 (2)−0.035 (2)−0.051 (2)0.041 (2)
B10.0398 (16)0.0427 (16)0.0314 (15)−0.0105 (14)−0.0062 (13)−0.0043 (12)
F10.203 (4)0.0699 (18)0.118 (3)−0.039 (2)−0.001 (3)−0.0445 (17)
F20.0429 (13)0.326 (5)0.0545 (15)−0.038 (2)−0.0104 (11)−0.029 (2)
F30.194 (4)0.138 (3)0.089 (2)−0.106 (3)−0.043 (2)0.058 (2)
F40.0443 (11)0.151 (2)0.0487 (13)0.0050 (13)−0.0107 (10)−0.0139 (14)

Geometric parameters (Å, °)

Cu1—N22.0828 (19)C13—H13A0.9300
Cu1—N32.0628 (18)C14—C151.382 (4)
Cu1—N62.013 (2)C14—H14A0.9300
Cu1—P22.1883 (6)C15—C161.385 (3)
P2—C111.820 (2)C15—H15A0.9300
P2—C51.826 (2)C16—H16A0.9300
P2—C41.862 (2)C17—C181.384 (3)
N1—C11.389 (3)C17—H17A0.9300
N1—C41.435 (3)C18—C191.378 (3)
N1—H1A0.8600C18—H18A0.9300
N2—C331.331 (3)C19—C201.395 (3)
N2—C341.357 (3)C19—H19A0.9300
N3—C171.333 (3)C20—C211.402 (3)
N3—C211.353 (3)C20—C221.457 (3)
N4—C291.326 (3)C21—C341.461 (3)
N4—C281.354 (3)C22—C291.435 (3)
N5—C221.326 (3)C23—C241.422 (3)
N5—C231.351 (3)C23—C281.426 (3)
N6—C351.123 (3)C24—C251.361 (3)
C1—C21.396 (3)C24—H24A0.9300
C1—C3i1.400 (3)C25—C261.413 (4)
C2—C31.390 (3)C25—H25A0.9300
C2—H2A0.9300C26—C271.363 (3)
C3—C1i1.400 (3)C26—H26A0.9300
C3—H3A0.9300C27—C281.417 (3)
C4—H4A0.9700C27—H27A0.9300
C4—H4B0.9700C29—C301.461 (3)
C5—C61.389 (3)C30—C341.391 (3)
C5—C101.394 (3)C30—C311.405 (3)
C6—C71.394 (4)C31—C321.380 (3)
C6—H6A0.9300C31—H31A0.9300
C7—C81.370 (5)C32—C331.388 (3)
C7—H7A0.9300C32—H32A0.9300
C8—C91.377 (4)C33—H33A0.9300
C8—H8A0.9300C35—C361.460 (4)
C9—C101.380 (4)C36—H36A0.9600
C9—H9A0.9300C36—H36B0.9600
C10—H10A0.9300C36—H36C0.9600
C11—C121.386 (3)B1—F11.317 (4)
C11—C161.398 (3)B1—F41.336 (4)
C12—C131.384 (4)B1—F21.345 (4)
C12—H12A0.9300B1—F31.368 (4)
C13—C141.378 (4)
N6—Cu1—N3103.38 (8)C16—C15—H15A119.9
N6—Cu1—N2106.93 (8)C15—C16—C11119.9 (2)
N3—Cu1—N280.51 (7)C15—C16—H16A120.1
N6—Cu1—P2116.55 (6)C11—C16—H16A120.1
N3—Cu1—P2130.67 (5)N3—C17—C18123.2 (2)
N2—Cu1—P2111.75 (5)N3—C17—H17A118.4
C11—P2—C5102.19 (9)C18—C17—H17A118.4
C11—P2—C499.92 (10)C19—C18—C17119.2 (2)
C5—P2—C4104.86 (10)C19—C18—H18A120.4
C11—P2—Cu1121.19 (7)C17—C18—H18A120.4
C5—P2—Cu1108.62 (7)C18—C19—C20119.2 (2)
C4—P2—Cu1117.95 (7)C18—C19—H19A120.4
C1—N1—C4122.88 (19)C20—C19—H19A120.4
C1—N1—H1A118.6C19—C20—C21117.91 (19)
C4—N1—H1A118.6C19—C20—C22122.42 (19)
C33—N2—C34117.71 (19)C21—C20—C22119.64 (18)
C33—N2—Cu1129.25 (15)N3—C21—C20122.67 (19)
C34—N2—Cu1112.74 (14)N3—C21—C34116.87 (18)
C17—N3—C21117.82 (18)C20—C21—C34120.39 (18)
C17—N3—Cu1128.72 (15)N5—C22—C29121.64 (18)
C21—N3—Cu1113.35 (14)N5—C22—C20118.60 (18)
C29—N4—C28117.24 (18)C29—C22—C20119.75 (18)
C22—N5—C23117.20 (18)N5—C23—C24119.6 (2)
C35—N6—Cu1171.4 (3)N5—C23—C28121.26 (19)
N1—C1—C2119.23 (19)C24—C23—C28119.15 (19)
N1—C1—C3i123.28 (19)C25—C24—C23119.9 (2)
C2—C1—C3i117.44 (19)C25—C24—H24A120.0
C3—C2—C1121.5 (2)C23—C24—H24A120.0
C3—C2—H2A119.2C24—C25—C26120.8 (2)
C1—C2—H2A119.2C24—C25—H25A119.6
C2—C3—C1i121.04 (19)C26—C25—H25A119.6
C2—C3—H3A119.5C27—C26—C25121.1 (2)
C1i—C3—H3A119.5C27—C26—H26A119.5
N1—C4—P2115.05 (15)C25—C26—H26A119.5
N1—C4—H4A108.5C26—C27—C28119.7 (2)
P2—C4—H4A108.5C26—C27—H27A120.1
N1—C4—H4B108.5C28—C27—H27A120.1
P2—C4—H4B108.5N4—C28—C27119.6 (2)
H4A—C4—H4B107.5N4—C28—C23121.04 (19)
C6—C5—C10118.6 (2)C27—C28—C23119.3 (2)
C6—C5—P2124.84 (18)N4—C29—C22121.61 (19)
C10—C5—P2116.59 (18)N4—C29—C30118.87 (18)
C5—C6—C7119.9 (3)C22—C29—C30119.51 (18)
C5—C6—H6A120.0C34—C30—C31118.03 (19)
C7—C6—H6A120.0C34—C30—C29119.96 (18)
C8—C7—C6120.8 (3)C31—C30—C29121.99 (19)
C8—C7—H7A119.6C32—C31—C30119.0 (2)
C6—C7—H7A119.6C32—C31—H31A120.5
C7—C8—C9119.7 (2)C30—C31—H31A120.5
C7—C8—H8A120.2C31—C32—C33118.9 (2)
C9—C8—H8A120.2C31—C32—H32A120.6
C8—C9—C10120.3 (3)C33—C32—H32A120.6
C8—C9—H9A119.9N2—C33—C32123.5 (2)
C10—C9—H9A119.9N2—C33—H33A118.3
C9—C10—C5120.8 (3)C32—C33—H33A118.3
C9—C10—H10A119.6N2—C34—C30122.87 (19)
C5—C10—H10A119.6N2—C34—C21116.53 (18)
C12—C11—C16119.2 (2)C30—C34—C21120.54 (18)
C12—C11—P2119.89 (17)N6—C35—C36179.3 (3)
C16—C11—P2120.85 (17)C35—C36—H36A109.5
C13—C12—C11120.5 (2)C35—C36—H36B109.5
C13—C12—H12A119.8H36A—C36—H36B109.5
C11—C12—H12A119.8C35—C36—H36C109.5
C14—C13—C12120.1 (3)H36A—C36—H36C109.5
C14—C13—H13A119.9H36B—C36—H36C109.5
C12—C13—H13A119.9F1—B1—F4111.9 (3)
C13—C14—C15120.1 (2)F1—B1—F2110.7 (4)
C13—C14—H14A120.0F4—B1—F2108.9 (3)
C15—C14—H14A120.0F1—B1—F3103.6 (3)
C14—C15—C16120.2 (2)F4—B1—F3110.1 (3)
C14—C15—H15A119.9F2—B1—F3111.5 (3)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2208).

References

  • Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Eur. J. Inorg. Chem. pp. 2408–2418.
  • Chipot, C., Jaffe, R., Maigret, B., Pearlman, D. A. & Kollman, P. A. (1996). J. Am. Chem. Soc.118, 11217–11224.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Saenger, W. (1984). Principles of Nucleic Acid Structure, pp. 132–140. New York: Springer-Verlag.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010.
  • Waters, M. L. (2002). Curr. Opin. Chem. Biol.6, 736–741. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography