PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2281.
Published online 2009 August 29. doi:  10.1107/S1600536809034035
PMCID: PMC2970102

5-Benzoyl-N,4-diphenyl-4,5-dihydro-1H-pyrazole-3-carboxamide

Abstract

The title compound, C23H19N3O2, was synthesized by the 1,3-dipolar cyclo­addition reaction of N-phenyl-α-diazo­acetamide and chalcone. In the mol­ecule, the pyrazoline ring assumes an envelope conformation. Weak inter­molecular C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For the 1,3-dipolar cyclo­addition reaction, see: Grigg (1995 [triangle]). For applications of pyrazoline and its derivatives, see: Dhal et al. (1975 [triangle]); Lombardino & Ottemes (1981 [triangle]); Parmar et al. (1974 [triangle]); Rawal et al. (1963 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2281-scheme1.jpg

Experimental

Crystal data

  • C23H19N3O2
  • M r = 369.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2281-efi1.jpg
  • a = 5.809 (3) Å
  • b = 10.717 (5) Å
  • c = 29.428 (7) Å
  • β = 92.753 (5)°
  • V = 1829.9 (13) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.70 mm−1
  • T = 293 K
  • 0.36 × 0.24 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.786, T max = 0.873
  • 27720 measured reflections
  • 2929 independent reflections
  • 2390 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.066
  • S = 1.00
  • 2929 reflections
  • 261 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034035/xu2571sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034035/xu2571Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The diffraction measurements were made at the Centre for Testing and Analysis, Chengdu Branch, Chinese Academy of Sciences. We acknowledge financial support from China West Normal University.

supplementary crystallographic information

Comment

The 1,3-dipolar cycloaddition reaction is one of the most efficient and widely used methods for the synthesis of nitrogen-containing five-membered heterocycles (Grigg, 1995). As important and useful five-membered heterocyclic compounds, pyrazoline and its derivatives were found to possess antifungal (Dhal et al., 1975), immunosuppressive (Lombardino et al.,1981), psychoanaleptic (Parmar et al. 1974), and antiviral (Rawal et al. 1963) activities. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. In the molecule the dihydropyrazole ring assumes an envelope conformation. The C6-benene ring and C15-benene ring make dihedral angles of 82.08 (7)° and 84.78 (7)° with respect to the C23-benene ring. The dihedral angle between the C6-benzene and C15-benene ring is 71.39 (7)°. Intermolecular weak C—H···O hydrogen bonding is present in the crystal structure (Table 1).

Experimental

N-Phenyl-alfa-diazoacetamide (0.035 g, 0.2 mmol) and chalcone (0.042 g, 0.2 mmol) and 1,4-diaza-bicyclo[2.2.2]octan (0.02 g, 0.2 mmol) were dissolved in toluene (2 mL). The solution was warmed to 323 K, and the solution was stirred for 2 h. After removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel to give target compound. Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol.

Refinement

Imino H atoms were located in a difference Fourier map and were refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93 or 0.98 Å, and refined using a riding model, with Uiso(H) =1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C23H19N3O2F(000) = 776
Mr = 369.41Dx = 1.341 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 11458 reflections
a = 5.809 (3) Åθ = 3.0–62.7°
b = 10.717 (5) ŵ = 0.70 mm1
c = 29.428 (7) ÅT = 293 K
β = 92.753 (5)°Block, colorless
V = 1829.9 (13) Å30.36 × 0.24 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Gemini S Ultra diffractometer2929 independent reflections
Radiation source: Ultra (Cu) X-ray Source2390 reflections with I > 2σ(I)
mirrorRint = 0.031
Detector resolution: 15.9149 pixels mm-1θmax = 62.7°, θmin = 3.0°
ω scansh = −6→6
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −12→12
Tmin = 0.786, Tmax = 0.873l = −33→33
27720 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0012P)2 + 1.114P] where P = (Fo2 + 2Fc2)/3
2929 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.5592 (2)0.44501 (12)0.90247 (4)0.0526 (3)
N10.9367 (3)0.50816 (14)0.90580 (5)0.0445 (4)
N21.0040 (2)0.35676 (13)0.83258 (4)0.0414 (3)
O10.7319 (2)0.41770 (11)0.74559 (4)0.0547 (3)
C40.4434 (3)0.27270 (15)0.72408 (5)0.0351 (4)
C180.9446 (3)0.59203 (15)0.94313 (5)0.0397 (4)
N31.0026 (2)0.26477 (14)0.79899 (5)0.0425 (4)
C90.6458 (3)0.25420 (14)0.83326 (5)0.0325 (3)
H90.49060.28850.82770.039*
C100.6433 (3)0.14494 (14)0.86613 (5)0.0336 (4)
C80.7622 (3)0.22873 (15)0.78770 (5)0.0350 (4)
H80.75010.14070.77890.042*
C170.7560 (3)0.43921 (15)0.88959 (5)0.0388 (4)
C30.3815 (3)0.14837 (16)0.71876 (6)0.0474 (4)
H30.47050.08630.73300.057*
C160.8112 (3)0.35355 (14)0.85194 (5)0.0357 (4)
C70.6522 (3)0.31416 (15)0.75101 (5)0.0370 (4)
C150.8272 (3)0.06224 (16)0.87032 (6)0.0436 (4)
H150.95050.07060.85150.052*
C230.7730 (3)0.59886 (16)0.97404 (6)0.0461 (4)
H230.64040.55080.96990.055*
C140.8282 (3)−0.03262 (17)0.90231 (7)0.0540 (5)
H140.9514−0.08800.90470.065*
C201.1647 (4)0.74369 (18)0.98647 (6)0.0554 (5)
H201.29640.79250.99060.067*
C210.9955 (4)0.75011 (18)1.01741 (6)0.0540 (5)
H211.01250.80291.04240.065*
C60.1133 (3)0.3315 (2)0.67649 (6)0.0572 (5)
H60.02280.39320.66240.069*
C110.4622 (3)0.13108 (16)0.89459 (6)0.0447 (4)
H110.33770.18560.89210.054*
C50.3068 (3)0.36379 (17)0.70260 (6)0.0471 (4)
H50.34670.44740.70590.056*
C191.1410 (3)0.66527 (17)0.94917 (6)0.0493 (5)
H191.25600.66160.92830.059*
C220.8001 (3)0.67782 (18)1.01115 (6)0.0524 (5)
H220.68540.68211.03210.063*
C20.1871 (3)0.11665 (19)0.69215 (7)0.0597 (5)
H20.14680.03320.68840.072*
C130.6475 (4)−0.04517 (19)0.93055 (7)0.0585 (5)
H130.6489−0.10860.95210.070*
C10.0535 (3)0.2077 (2)0.67127 (7)0.0588 (5)
H1−0.07730.18580.65360.071*
C120.4647 (4)0.03661 (19)0.92674 (6)0.0569 (5)
H120.34260.02840.94580.068*
H41.072 (2)0.4961 (18)0.8932 (6)0.055 (6)*
H181.081 (3)0.2914 (16)0.7754 (5)0.052 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0470 (8)0.0564 (8)0.0546 (8)−0.0019 (6)0.0049 (6)−0.0169 (6)
N10.0482 (10)0.0448 (9)0.0408 (8)−0.0093 (7)0.0058 (7)−0.0109 (7)
N20.0417 (9)0.0438 (8)0.0385 (8)−0.0059 (7)−0.0007 (7)−0.0024 (6)
O10.0634 (9)0.0401 (7)0.0600 (8)−0.0133 (6)−0.0054 (6)0.0091 (6)
C40.0389 (9)0.0372 (9)0.0296 (8)0.0019 (7)0.0045 (7)0.0002 (7)
C180.0509 (11)0.0331 (9)0.0345 (9)−0.0008 (8)−0.0038 (8)−0.0024 (7)
N30.0363 (8)0.0521 (9)0.0394 (8)−0.0017 (7)0.0055 (7)−0.0060 (7)
C90.0314 (9)0.0322 (8)0.0340 (8)0.0003 (7)0.0005 (7)−0.0013 (7)
C100.0373 (9)0.0311 (8)0.0320 (8)−0.0046 (7)−0.0033 (7)−0.0025 (7)
C80.0362 (9)0.0339 (9)0.0347 (8)−0.0004 (7)0.0007 (7)−0.0035 (7)
C170.0495 (11)0.0323 (9)0.0344 (9)−0.0019 (8)−0.0009 (8)0.0007 (7)
C30.0482 (11)0.0372 (10)0.0557 (11)0.0059 (8)−0.0086 (9)−0.0029 (8)
C160.0402 (10)0.0318 (9)0.0348 (9)−0.0027 (7)0.0000 (7)0.0003 (7)
C70.0424 (10)0.0350 (9)0.0340 (9)0.0003 (8)0.0068 (7)−0.0022 (7)
C150.0411 (10)0.0415 (10)0.0479 (10)−0.0001 (8)−0.0021 (8)0.0024 (8)
C230.0501 (11)0.0460 (10)0.0420 (10)−0.0053 (9)0.0005 (8)−0.0055 (8)
C140.0543 (12)0.0438 (11)0.0621 (12)0.0029 (9)−0.0148 (10)0.0086 (9)
C200.0600 (13)0.0489 (11)0.0562 (12)−0.0122 (10)−0.0095 (10)−0.0089 (9)
C210.0704 (14)0.0464 (11)0.0441 (10)0.0033 (10)−0.0085 (10)−0.0125 (9)
C60.0568 (13)0.0617 (13)0.0520 (12)0.0123 (10)−0.0089 (10)0.0111 (10)
C110.0454 (11)0.0433 (10)0.0456 (10)−0.0008 (8)0.0049 (8)0.0025 (8)
C50.0542 (12)0.0412 (10)0.0457 (10)0.0020 (9)0.0014 (9)0.0092 (8)
C190.0525 (12)0.0487 (11)0.0467 (10)−0.0082 (9)0.0028 (9)−0.0064 (9)
C220.0597 (13)0.0557 (12)0.0419 (10)0.0039 (10)0.0030 (9)−0.0082 (9)
C20.0556 (13)0.0461 (11)0.0758 (14)0.0002 (10)−0.0145 (11)−0.0150 (10)
C130.0739 (15)0.0499 (12)0.0503 (11)−0.0119 (11)−0.0105 (10)0.0170 (9)
C10.0491 (12)0.0708 (14)0.0549 (12)0.0069 (10)−0.0138 (9)−0.0100 (10)
C120.0642 (14)0.0582 (12)0.0490 (11)−0.0101 (11)0.0111 (10)0.0104 (10)

Geometric parameters (Å, °)

O2—C171.223 (2)C15—C141.385 (2)
N1—C171.352 (2)C15—H150.9300
N1—C181.418 (2)C23—C221.385 (2)
N1—H40.895 (9)C23—H230.9300
N2—C161.281 (2)C14—C131.376 (3)
N2—N31.3959 (19)C14—H140.9300
O1—C71.216 (2)C20—C211.373 (3)
C4—C31.387 (2)C20—C191.384 (2)
C4—C51.391 (2)C20—H200.9300
C4—C71.485 (2)C21—C221.379 (3)
C18—C231.383 (2)C21—H210.9300
C18—C191.390 (2)C6—C51.375 (3)
N3—C81.471 (2)C6—C11.379 (3)
N3—H180.896 (9)C6—H60.9300
C9—C101.519 (2)C11—C121.385 (2)
C9—C161.519 (2)C11—H110.9300
C9—C81.555 (2)C5—H50.9300
C9—H90.9800C19—H190.9300
C10—C111.384 (2)C22—H220.9300
C10—C151.389 (2)C2—C11.373 (3)
C8—C71.532 (2)C2—H20.9300
C8—H80.9800C13—C121.377 (3)
C17—C161.486 (2)C13—H130.9300
C3—C21.385 (3)C1—H10.9300
C3—H30.9300C12—H120.9300
C17—N1—C18127.97 (16)C14—C15—H15119.8
C17—N1—H4117.2 (12)C10—C15—H15119.8
C18—N1—H4114.6 (13)C18—C23—C22119.52 (18)
C16—N2—N3108.71 (13)C18—C23—H23120.2
C3—C4—C5118.93 (16)C22—C23—H23120.2
C3—C4—C7123.26 (15)C13—C14—C15120.24 (18)
C5—C4—C7117.80 (15)C13—C14—H14119.9
C23—C18—C19119.96 (16)C15—C14—H14119.9
C23—C18—N1123.06 (16)C21—C20—C19120.62 (19)
C19—C18—N1116.91 (16)C21—C20—H20119.7
N2—N3—C8108.57 (13)C19—C20—H20119.7
N2—N3—H18109.8 (12)C20—C21—C22119.59 (18)
C8—N3—H18114.9 (12)C20—C21—H21120.2
C10—C9—C16109.58 (13)C22—C21—H21120.2
C10—C9—C8115.57 (13)C5—C6—C1119.95 (18)
C16—C9—C898.12 (12)C5—C6—H6120.0
C10—C9—H9111.0C1—C6—H6120.0
C16—C9—H9111.0C10—C11—C12120.56 (18)
C8—C9—H9111.0C10—C11—H11119.7
C11—C10—C15118.77 (16)C12—C11—H11119.7
C11—C10—C9119.93 (15)C6—C5—C4120.72 (18)
C15—C10—C9121.17 (15)C6—C5—H5119.6
N3—C8—C7111.19 (13)C4—C5—H5119.6
N3—C8—C9101.93 (12)C20—C19—C18119.61 (18)
C7—C8—C9108.60 (13)C20—C19—H19120.2
N3—C8—H8111.6C18—C19—H19120.2
C7—C8—H8111.6C21—C22—C23120.70 (19)
C9—C8—H8111.6C21—C22—H22119.6
O2—C17—N1125.75 (16)C23—C22—H22119.6
O2—C17—C16120.06 (15)C1—C2—C3120.43 (19)
N1—C17—C16114.16 (16)C1—C2—H2119.8
C2—C3—C4119.96 (17)C3—C2—H2119.8
C2—C3—H3120.0C14—C13—C12119.73 (18)
C4—C3—H3120.0C14—C13—H13120.1
N2—C16—C17122.66 (15)C12—C13—H13120.1
N2—C16—C9114.14 (14)C2—C1—C6120.00 (19)
C17—C16—C9123.20 (15)C2—C1—H1120.0
O1—C7—C4120.64 (15)C6—C1—H1120.0
O1—C7—C8119.30 (15)C13—C12—C11120.24 (19)
C4—C7—C8119.99 (14)C13—C12—H12119.9
C14—C15—C10120.45 (18)C11—C12—H12119.9
C17—N1—C18—C2311.9 (3)C3—C4—C7—C8−22.0 (2)
C17—N1—C18—C19−171.13 (17)C5—C4—C7—C8159.26 (15)
C16—N2—N3—C818.98 (18)N3—C8—C7—O1−22.7 (2)
C16—C9—C10—C11102.37 (17)C9—C8—C7—O188.68 (18)
C8—C9—C10—C11−147.97 (15)N3—C8—C7—C4160.37 (13)
C16—C9—C10—C15−73.52 (19)C9—C8—C7—C4−88.26 (17)
C8—C9—C10—C1536.1 (2)C11—C10—C15—C140.3 (2)
N2—N3—C8—C786.75 (16)C9—C10—C15—C14176.24 (15)
N2—N3—C8—C9−28.81 (16)C19—C18—C23—C22−0.8 (3)
C10—C9—C8—N3−90.48 (15)N1—C18—C23—C22176.05 (17)
C16—C9—C8—N325.84 (14)C10—C15—C14—C13−0.6 (3)
C10—C9—C8—C7152.07 (13)C19—C20—C21—C22−0.1 (3)
C16—C9—C8—C7−91.60 (14)C15—C10—C11—C120.2 (3)
C18—N1—C17—O26.2 (3)C9—C10—C11—C12−175.83 (16)
C18—N1—C17—C16−175.71 (16)C1—C6—C5—C4−0.2 (3)
C5—C4—C3—C20.4 (3)C3—C4—C5—C60.0 (3)
C7—C4—C3—C2−178.35 (17)C7—C4—C5—C6178.84 (16)
N3—N2—C16—C17179.69 (14)C21—C20—C19—C18−0.3 (3)
N3—N2—C16—C90.10 (19)C23—C18—C19—C200.7 (3)
O2—C17—C16—N2169.36 (16)N1—C18—C19—C20−176.31 (17)
N1—C17—C16—N2−8.8 (2)C20—C21—C22—C230.0 (3)
O2—C17—C16—C9−11.1 (2)C18—C23—C22—C210.4 (3)
N1—C17—C16—C9170.74 (14)C4—C3—C2—C1−0.6 (3)
C10—C9—C16—N2103.60 (16)C15—C14—C13—C120.4 (3)
C8—C9—C16—N2−17.29 (17)C3—C2—C1—C60.4 (3)
C10—C9—C16—C17−75.98 (19)C5—C6—C1—C20.0 (3)
C8—C9—C16—C17163.12 (14)C14—C13—C12—C110.1 (3)
C3—C4—C7—O1161.11 (17)C10—C11—C12—C13−0.4 (3)
C5—C4—C7—O1−17.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.563.468 (4)166
C8—H8···O1i0.982.503.475 (4)173

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2571).

References

  • Dhal, P. N., Acharya, T. E. & Nayak, A. (1975). J. Indian Chem. Soc.52, 1196–1200.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Grigg, R. (1995). Tetrahedron Asymmetry, 6, 2475–2486.
  • Lombardino, G. & Ottemes, I. G. (1981). J. Med. Chem.24, 830–834. [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Parmar, S. S., Pandey, B. R., Dwivedi, C. & Harbison, R. D. (1974). J. Pharm. Sci.63, 1152–1255. [PubMed]
  • Rawal, A. A., Thakor, V. M. & Shah, N. M. (1963). J. Indian Chem. Soc.40, 323–326.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography