PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2287.
Published online 2009 August 29. doi:  10.1107/S1600536809033960
PMCID: PMC2970099

2-(1,3-Benzoxazol-2-ylsulfan­yl)-1-phenyl­ethanone

Abstract

In the title compound, C15H11NO2S, a new thio-benzoxazole derivative, the dihedral angle between the benzoxazole ring and the phenyl ring is 9.91 (9)°. An inter­esting feature of the crystal structure is the short C(...)S [3.4858 (17) Å] contact, which is shorter than the sum of the van der Waals radii of these atoms. In the crystal structure, mol­ecules are linked together by zigzag inter­molecular C—H(...)N inter­actions into a column along the a axis. The crystal structure is further stabilized by inter­molecular π–π inter­actions [centroid–centroid = 3.8048 (10) Å].

Related literature

For applications of 2-(benzo[d]oxazol-2-ylthio)-1-phenyl­ethanone and β-keto-sulfones in organic synthesis, see: Marco et al. (1995 [triangle]); Fuju et al. (1988 [triangle]); Ni et al. (2006 [triangle]). For uses of haloalkyl sulfones, see: Grossert et al. (1984 [triangle]); Oishi et al. (1988 [triangle]); Antane et al. (2004 [triangle]). For their biological activity, see: Padmavathi et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2287-scheme1.jpg

Experimental

Crystal data

  • C15H11NO2S
  • M r = 269.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2287-efi1.jpg
  • a = 4.8580 (2) Å
  • b = 14.0780 (5) Å
  • c = 18.6840 (7) Å
  • V = 1277.82 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 296 K
  • 0.50 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.886, T max = 0.976
  • 13902 measured reflections
  • 3659 independent reflections
  • 3175 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.093
  • S = 1.04
  • 3659 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1514 Friedel pairs
  • Flack parameter: 0.07 (7)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2004 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033960/at2859sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033960/at2859Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Isfahan and the University of Malaya for supporting this work.

supplementary crystallographic information

Comment

2-(Benzo[d]oxazol-2-ylthio)-1-phenylethanone is of great importance in organic synthesis and β-Keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Marco et al., 1995; Fuju et al., 1988; Ni et al., 2006). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl sulfones and dihalomethyl sulfones. Halomethyl sulfones and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides, and β-hydroxy-sulfones. Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Grossert et al., 1984; Oishi et al., 1988; Antane et al., 2004). They also possess other biological properties such as herbicidal, bactericidal antifungal and insecticidal. Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We prepared this compound as a precursor for synthesis of gem-difluoromethylene- containing heterocycle.

In the molecule of the title compound, (Fig. 1), a new thio-benzoxazole derivative, the dihedral angle between the benzoxazole ring and the phenyl ring is 9.91 (9)°. The interesting feature of the crystal structure is the short C6···S1i [3.4858 (17) Å; (i) -1 + x, y, z] contact which is shorter than the sum of the van der Waals radii of these atoms. In the crystal structure, the molecules are linked together by a zig-zag intermolecular C—H···N interactions (Table 1) which packed into a column along the a axis (Fig. 2). The crystal structure is further stabilized by the intramolecular π–π interactions [Cg1···Cg2i = 3.8048 (10) Å].

Experimental

Sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzoxazole (3 mmol) in ethanol (15 mL) and water (15 mL) and stirred in room temperature for 30 min. α-Bromoacetophenone (3 mmol) was added to the reaction mixture and stirring was continued for 1h. The reaction was monitored by TLC and after 60 min. showed the complete disappearance of starting material. The reaction mixture was poured into 100 mL of 1M HCl containing 50 g of crushed ice. The product was filtered under vacuum and filtrate washed with 10 mL ice-cold ethanol and 10 mL water. Recrystalization from petrol ether and filtration gave the title compound. m.p.: 397-398 K; 1H NMR (400 MHz; CDCl3): δ 7.86-7.21 (m, 9H), 4.58 (s, 2H). 13C NMR (126 MHz; CDCl3): δ 194.1 (C═O), 164.3, 148.9, 140.8, 136.1, 132.6, 128.0, 127.8, 124.1, 122.9, 118.3, 109.6, 37.3. IR (KBr, cm-1 ): 3027, 2581, 1671 (C═O), 1593, 1492, 1447, 1382, 1326, 1291, 1230, 1182, 1025, 993, 738. Analysis calculated for C15H11NO2S: C 66.89, H 4.12, N 5.20%. Found: C 66.96, H 4.06, N 5.17%.

Refinement

All of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model approximation with Uiso (H) = 1.2 Ueq (C). In the presence of sufficient anomalous scattering the absolute structure was determined (1514 Friedel pairs).

Figures

Fig. 1.
The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The crystal packing of the title compound, viewed down the c-axis, showing linking of the molecules along the a-axis through intermolecular C—H···N interactions. Intermolecular interactions are drawn as dashed lines.

Crystal data

C15H11NO2SDx = 1.400 Mg m3
Mr = 269.31Melting point: 398 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4173 reflections
a = 4.8580 (2) Åθ = 2.6–28.2°
b = 14.0780 (5) ŵ = 0.25 mm1
c = 18.6840 (7) ÅT = 296 K
V = 1277.82 (8) Å3Needle, colourless
Z = 40.50 × 0.10 × 0.10 mm
F(000) = 560

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3659 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −6→6
Tmin = 0.886, Tmax = 0.976k = −19→19
13902 measured reflectionsl = −26→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.093w = 1/[σ2(Fo2) + (0.0487P)2 + 0.1389P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3659 reflectionsΔρmax = 0.35 e Å3
172 parametersΔρmin = −0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1514 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.07 (7)

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.01065 (10)0.44145 (3)0.66514 (2)0.02920 (11)
O10.3102 (3)0.29909 (9)0.71157 (6)0.0295 (3)
N10.4022 (3)0.33643 (10)0.59627 (7)0.0250 (3)
C10.5079 (4)0.23556 (11)0.68726 (8)0.0262 (3)
C20.6325 (4)0.16254 (14)0.72375 (10)0.0346 (4)
H2A0.58950.14800.77100.042*
C30.8271 (4)0.11206 (14)0.68500 (10)0.0366 (4)
H3A0.91930.06210.70710.044*
C40.8889 (4)0.13370 (13)0.61400 (10)0.0341 (4)
H4A1.02090.09800.59000.041*
C50.7576 (4)0.20749 (13)0.57839 (9)0.0292 (4)
H5A0.79820.22180.53100.035*
C60.5639 (3)0.25876 (12)0.61651 (8)0.0244 (3)
C70.2612 (3)0.35517 (12)0.65300 (8)0.0251 (3)
C8−0.0098 (4)0.47588 (12)0.57236 (8)0.0289 (3)
H8A0.16640.50080.55670.035*
H8B−0.05360.42090.54320.035*
C9−0.2291 (3)0.55059 (12)0.56314 (9)0.0266 (3)
C10−0.2762 (4)0.58747 (12)0.48943 (9)0.0264 (3)
C11−0.4792 (4)0.65637 (12)0.47888 (10)0.0337 (4)
H11A−0.58230.67800.51750.040*
C12−0.5275 (5)0.69250 (13)0.41129 (11)0.0396 (5)
H12A−0.66300.73830.40450.048*
C13−0.3744 (4)0.66049 (14)0.35363 (11)0.0397 (5)
H13A−0.40700.68500.30820.048*
C14−0.1733 (4)0.59220 (15)0.36330 (10)0.0375 (4)
H14A−0.07130.57070.32440.045*
C15−0.1237 (4)0.55572 (14)0.43100 (10)0.0312 (4)
H15A0.01200.50990.43740.037*
O2−0.3588 (3)0.57915 (10)0.61422 (7)0.0390 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0334 (2)0.0325 (2)0.02181 (18)0.0053 (2)0.00128 (18)−0.00418 (15)
O10.0362 (7)0.0345 (6)0.0179 (5)0.0024 (5)0.0020 (5)0.0012 (5)
N10.0279 (7)0.0290 (7)0.0180 (6)0.0018 (6)−0.0013 (5)−0.0011 (5)
C10.0289 (8)0.0297 (7)0.0200 (6)−0.0035 (8)0.0007 (7)0.0003 (5)
C20.0439 (11)0.0348 (9)0.0253 (8)−0.0017 (8)−0.0021 (8)0.0072 (7)
C30.0413 (11)0.0305 (9)0.0381 (10)0.0046 (8)−0.0074 (8)0.0052 (8)
C40.0343 (9)0.0313 (9)0.0367 (10)0.0049 (8)0.0024 (8)−0.0049 (8)
C50.0322 (9)0.0335 (9)0.0219 (8)−0.0007 (8)0.0020 (7)−0.0034 (7)
C60.0283 (9)0.0263 (8)0.0185 (7)−0.0028 (6)−0.0038 (6)−0.0009 (6)
C70.0276 (8)0.0279 (8)0.0198 (7)−0.0024 (7)−0.0030 (6)−0.0012 (6)
C80.0290 (8)0.0332 (8)0.0243 (7)0.0037 (8)0.0008 (8)0.0017 (6)
C90.0253 (8)0.0227 (7)0.0316 (8)−0.0029 (7)0.0008 (6)−0.0021 (7)
C100.0251 (8)0.0221 (8)0.0322 (9)−0.0040 (6)−0.0028 (7)0.0011 (6)
C110.0319 (9)0.0282 (8)0.0409 (9)0.0010 (8)−0.0054 (8)−0.0018 (7)
C120.0377 (11)0.0300 (9)0.0512 (11)0.0011 (9)−0.0159 (10)0.0046 (8)
C130.0438 (11)0.0370 (10)0.0383 (10)−0.0096 (9)−0.0134 (8)0.0083 (8)
C140.0359 (10)0.0449 (11)0.0317 (9)−0.0048 (9)−0.0024 (8)0.0045 (8)
C150.0287 (8)0.0335 (9)0.0313 (8)0.0005 (8)−0.0023 (7)0.0035 (8)
O20.0440 (8)0.0376 (7)0.0355 (7)0.0095 (6)0.0076 (6)−0.0020 (6)

Geometric parameters (Å, °)

S1—C71.7343 (17)C8—C91.507 (2)
S1—C81.8028 (16)C8—H8A0.9700
O1—C71.3704 (19)C8—H8B0.9700
O1—C11.389 (2)C9—O21.212 (2)
N1—C71.290 (2)C9—C101.489 (2)
N1—C61.398 (2)C10—C151.393 (3)
C1—C21.374 (2)C10—C111.397 (3)
C1—C61.389 (2)C11—C121.381 (2)
C2—C31.387 (3)C11—H11A0.9300
C2—H2A0.9300C12—C131.385 (3)
C3—C41.394 (3)C12—H12A0.9300
C3—H3A0.9300C13—C141.383 (3)
C4—C51.389 (3)C13—H13A0.9300
C4—H4A0.9300C14—C151.386 (3)
C5—C61.383 (2)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C7—S1—C895.81 (8)S1—C8—H8A109.7
C7—O1—C1103.29 (12)C9—C8—H8B109.7
C7—N1—C6103.67 (14)S1—C8—H8B109.7
C2—C1—O1128.62 (15)H8A—C8—H8B108.2
C2—C1—C6124.18 (18)O2—C9—C10122.17 (16)
O1—C1—C6107.20 (14)O2—C9—C8120.60 (16)
C1—C2—C3115.13 (17)C10—C9—C8117.23 (14)
C1—C2—H2A122.4C15—C10—C11119.18 (16)
C3—C2—H2A122.4C15—C10—C9122.08 (16)
C2—C3—C4122.13 (18)C11—C10—C9118.74 (16)
C2—C3—H3A118.9C12—C11—C10120.30 (18)
C4—C3—H3A118.9C12—C11—H11A119.8
C5—C4—C3121.36 (18)C10—C11—H11A119.9
C5—C4—H4A119.3C11—C12—C13120.01 (18)
C3—C4—H4A119.3C11—C12—H12A120.0
C6—C5—C4117.13 (16)C13—C12—H12A120.0
C6—C5—H5A121.4C14—C13—C12120.29 (18)
C4—C5—H5A121.4C14—C13—H13A119.9
C5—C6—C1120.06 (16)C12—C13—H13A119.9
C5—C6—N1130.61 (15)C13—C14—C15119.98 (19)
C1—C6—N1109.33 (15)C13—C14—H14A120.0
N1—C7—O1116.50 (15)C15—C14—H14A120.0
N1—C7—S1128.59 (13)C14—C15—C10120.25 (17)
O1—C7—S1114.90 (11)C14—C15—H15A119.9
C9—C8—S1109.67 (12)C10—C15—H15A119.9
C9—C8—H8A109.7
C7—O1—C1—C2−179.71 (19)C1—O1—C7—S1178.11 (12)
C7—O1—C1—C60.52 (17)C8—S1—C7—N18.41 (18)
O1—C1—C2—C3−178.94 (17)C8—S1—C7—O1−170.44 (13)
C6—C1—C2—C30.8 (3)C7—S1—C8—C9177.42 (12)
C1—C2—C3—C4−0.5 (3)S1—C8—C9—O20.7 (2)
C2—C3—C4—C50.0 (3)S1—C8—C9—C10−179.75 (13)
C3—C4—C5—C60.3 (3)O2—C9—C10—C15178.88 (17)
C4—C5—C6—C10.0 (2)C8—C9—C10—C15−0.7 (2)
C4—C5—C6—N1179.14 (16)O2—C9—C10—C11−0.8 (3)
C2—C1—C6—C5−0.5 (3)C8—C9—C10—C11179.60 (16)
O1—C1—C6—C5179.26 (15)C15—C10—C11—C120.0 (3)
C2—C1—C6—N1−179.86 (17)C9—C10—C11—C12179.69 (17)
O1—C1—C6—N1−0.08 (18)C10—C11—C12—C130.0 (3)
C7—N1—C6—C5−179.68 (17)C11—C12—C13—C140.2 (3)
C7—N1—C6—C1−0.43 (18)C12—C13—C14—C15−0.2 (3)
C6—N1—C7—O10.83 (19)C13—C14—C15—C100.1 (3)
C6—N1—C7—S1−178.00 (13)C11—C10—C15—C140.0 (3)
C1—O1—C7—N1−0.89 (19)C9—C10—C15—C14−179.73 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···N1i0.932.563.395 (2)149

Symmetry codes: (i) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2859).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun.34, 2443–2449.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl. Cryst.37, 258–264.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500.
  • Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem.62, 798–807.
  • Marco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem.60, 6678–6679.
  • Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem.71, 6829–6833. [PubMed]
  • Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359.
  • Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem.43, 917–924. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography