PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2186.
Published online 2009 August 19. doi:  10.1107/S1600536809032012
PMCID: PMC2970098

2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6-tetra­germacyclo­hexane dichloro­methane disolvate

Abstract

The title compound, C56H56Ge4O2·2CH2Cl2 or Tol8Ge4O2·2CH2Cl2 (Tol = p-CH3C6H4), was obtained serendipitously during the attempted synthesis of a branched oligogermane from Tol3GeNMe2 and PhGeH3. The mol­ecule contains an inversion center in the middle of the Ge4O2 ring which is in a chair conformation. The Ge—Ge bond distance is 2.4418 (5) Å and the Ge—O bond distances are 1.790 (2) and 1.785 (2) Å. The torsion angles within the Ge4O2 ring are −56.7 (1) and 56.1 (1)° for the Ge—Ge—O—Ge angles and −43.9 (1)° for the O—Ge—Ge—O angle.

Related literature

The related phenyl-substituted derivative Ph8Ge4O2 (Dräger & Häberle, 1985 [triangle]) is essentially isostructural with the title compound.

An external file that holds a picture, illustration, etc.
Object name is e-65-o2186-scheme1.jpg

Experimental

Crystal data

  • C56H56Ge4O2·2CH2Cl2
  • M r = 1221.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2186-efi1.jpg
  • a = 10.781 (1) Å
  • b = 11.905 (1) Å
  • c = 12.295 (1) Å
  • α = 110.941 (1)°
  • β = 94.766 (1)°
  • γ = 109.069 (1)°
  • V = 1356.8 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.43 mm−1
  • T = 123 K
  • 0.33 × 0.33 × 0.24 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.471, T max = 0.558
  • 12912 measured reflections
  • 5003 independent reflections
  • 4484 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.128
  • S = 1.04
  • 5003 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032012/lh2875sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032012/lh2875Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Funding for this work by a CAREER grant from the US National Science Foundation (CHE-0844758) is gratefully acknowledged.

supplementary crystallographic information

Comment

The molecular structure of (1) is shown in Fig. 1. The molecule adopts approximate C2 h symmetry and has an inversion center located in the center of the Ge4O2 ring. The six- membered ring adopts a chair-like conformation analagous to that of its carbon-containing congener, 1,4-dioxane. The crystal structure of (1) can be compared to the essentially isostructural perphenyl-substituted derivative Ph8Ge4O2 (2) (Dräger et al., 1985). The Ge-O distances of 1.790 (2) and 1.785 (2) Å in (1), are the same within experimental error as those in (2) (1.786 (1) and 1.781 (2) Å). The Ge - Ge single bond distance in (1) is 2.4418 (5) Å and is slightly shorter than that in (2) (2.448 (1) Å). The Ge1-C21 bond distance of 1.953 (3) Å is elongated relative to the remaining three Ge - Cipso bonds, which are all the same within experimental error. The Ge - Cipso bonds are nearly identical to those in the phenyl-substituted derivative (2).

The Ge1-O1-Ge2i [symmetry code: (i) -x, -y, -z+1] angle of 126.7 (1) ° in (1) is the same, within experimental error, as that in (2) (126.9 (1) °), while the Ge1-Ge2-O1i angle of 106.20 (8) ° is slightly smaller than that in (2) (106.7 (1)°). However, the Ge2-Ge1-O1 angle in (1) of 104.82 (8) °, is significantly smaller than that in (2) (106.7 (1) °). The torsion angles within the Ge4O2 ring in (1) are significantly different than those in (2). The Ge1-Ge2-O1i-Ge1i, Ge2i-O1-Ge1-Ge2, and O1-Ge1-Ge2-O1i torsion angles are -56.7 (1), -56.1 (1), and 43.9 (1) ° (respectively), while the corresponding torsion angles in (2) are -53.1 (1), -53.1 (1), and 41.9 (1) °.

Part of the crystal structure is shown in Fig. 2. One germanium atom of two of the four symmetry related molecules shown lies within the selected unit cell, while a germanium atom and an oxygen atom in the remaining two molecules lie within this unit cell. The distances between the centroids of the Ge4O2 rings are 10.78 (1) Å parallel to the a axis and 111.91 (1) Å parallel to the b axis.

Experimental

The title compound (1) was unexpectedly obtained during the attempted preparation of (Tol3Ge)3GePh (Tol = pCH3C6H4) from Tol3GeNMe2 and PhGeH3. The crude reaction mixture was recrystallized from dichloromethane which yielded a three X-ray quality crystals, all of which were determined to be compound (1).

Refinement

All hydrogen atoms were placed in calculated positions using a riding- model. Their positions were constrained realtive to their parent atom using the appropriate HFIX instruction in SHELXL97 (Sheldrick, 2008).

Figures

Fig. 1.
The molecular structure of (1), with displacement ellipsoids drawn at the 50% probability level. Primed atoms are related by the symmetry operator (-x, -y, -z+1).
Fig. 2.
Part of the crystal structure of (1), viewed approximately along the c axis.

Crystal data

C56H56Ge4O2·2CH2Cl2Z = 1
Mr = 1221.22F(000) = 620
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.781 (1) ÅCell parameters from 3385 reflections
b = 11.905 (1) Åθ = 2.4–25.5°
c = 12.295 (1) ŵ = 2.43 mm1
α = 110.941 (1)°T = 123 K
β = 94.766 (1)°Block, colorless
γ = 109.069 (1)°0.33 × 0.33 × 0.24 mm
V = 1356.8 (2) Å3

Data collection

Bruker APEXII CCD diffractometer5003 independent reflections
Radiation source: fine-focus sealed tube4484 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −12→13
Tmin = 0.471, Tmax = 0.558k = −14→14
12912 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.085P)2 + 1.7P] where P = (Fo2 + 2Fc2)/3
5003 reflections(Δ/σ)max = 0.010
307 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ge1−0.13908 (3)−0.12172 (3)0.54987 (3)0.01478 (13)
Ge20.05411 (3)−0.15168 (3)0.47168 (3)0.01465 (13)
Cl1−0.42422 (12)−0.66017 (13)0.12064 (10)0.0504 (3)
Cl2−0.34737 (13)−0.62602 (13)0.36550 (12)0.0487 (3)
O1−0.0976 (2)0.0503 (2)0.6079 (2)0.0176 (5)
C11−0.3071 (3)−0.2118 (3)0.4277 (3)0.0159 (7)
C12−0.4291 (4)−0.2575 (3)0.4579 (3)0.0186 (7)
H12A−0.4300−0.25330.53650.022*
C13−0.5499 (4)−0.3096 (3)0.3745 (3)0.0202 (7)
H13A−0.6325−0.33940.39730.024*
C14−0.5521 (4)−0.3189 (3)0.2584 (3)0.0207 (7)
C15−0.4299 (4)−0.2780 (3)0.2270 (3)0.0216 (8)
H15A−0.4297−0.28600.14730.026*
C16−0.3080 (4)−0.2255 (3)0.3089 (3)0.0179 (7)
H16A−0.2255−0.19900.28500.022*
C17−0.6840 (4)−0.3656 (4)0.1715 (4)0.0301 (9)
H17A−0.6664−0.36620.09440.045*
H17B−0.7309−0.30710.20290.045*
H17C−0.7403−0.45390.16060.045*
C21−0.1694 (3)−0.1603 (3)0.6886 (3)0.0171 (7)
C22−0.2246 (4)−0.2883 (4)0.6779 (3)0.0227 (8)
H22A−0.2491−0.35830.60140.027*
C23−0.2442 (4)−0.3144 (4)0.7784 (3)0.0259 (8)
H23A−0.2830−0.40210.76950.031*
C24−0.2076 (4)−0.2135 (4)0.8919 (3)0.0240 (8)
C25−0.1539 (4)−0.0865 (4)0.9010 (3)0.0238 (8)
H25A−0.1294−0.01620.97730.029*
C26−0.1353 (4)−0.0601 (4)0.8020 (3)0.0214 (7)
H26A−0.09870.02780.81100.026*
C27−0.2218 (5)−0.2411 (5)1.0016 (4)0.0352 (10)
H27A−0.1859−0.15891.07290.053*
H27B−0.1715−0.29511.00640.053*
H27C−0.3171−0.28730.99670.053*
C310.2103 (3)−0.1027 (3)0.5950 (3)0.0161 (7)
C320.3365 (4)−0.0790 (3)0.5677 (3)0.0204 (7)
H32A0.3441−0.09100.48820.024*
C330.4503 (4)−0.0386 (4)0.6537 (3)0.0215 (7)
H33A0.5353−0.02240.63270.026*
C340.4436 (4)−0.0209 (3)0.7708 (3)0.0203 (7)
C350.3173 (4)−0.0456 (4)0.7987 (3)0.0220 (8)
H35A0.3103−0.03560.87780.026*
C360.2015 (4)−0.0846 (4)0.7134 (3)0.0215 (8)
H36A0.1168−0.09900.73480.026*
C370.5681 (4)0.0202 (4)0.8630 (4)0.0298 (9)
H37A0.54440.02780.93980.045*
H37B0.63270.10460.87150.045*
H37C0.6087−0.04490.83790.045*
C410.0141 (3)−0.3236 (3)0.3480 (3)0.0168 (7)
C42−0.0299 (4)−0.3508 (3)0.2284 (3)0.0192 (7)
H42A−0.0363−0.28360.20660.023*
C43−0.0646 (4)−0.4758 (4)0.1403 (3)0.0207 (7)
H43A−0.0940−0.49260.05900.025*
C44−0.0568 (3)−0.5761 (3)0.1697 (3)0.0223 (8)
C45−0.0114 (4)−0.5482 (4)0.2895 (3)0.0234 (8)
H45A−0.0049−0.61550.31110.028*
C460.0242 (4)−0.4241 (3)0.3776 (3)0.0196 (7)
H46A0.0557−0.40700.45860.023*
C47−0.0987 (4)−0.7119 (4)0.0750 (4)0.0312 (9)
H47A−0.1281−0.7134−0.00320.047*
H47B−0.1731−0.77160.09260.047*
H47C−0.0222−0.73930.07410.047*
C51−0.3605 (4)−0.5477 (4)0.2705 (4)0.0302 (9)
H51A−0.2705−0.48330.27890.036*
H51B−0.4207−0.50030.29440.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ge10.0139 (2)0.0158 (2)0.0129 (2)0.00301 (15)0.00181 (15)0.00655 (15)
Ge20.0143 (2)0.0151 (2)0.0125 (2)0.00354 (16)0.00122 (15)0.00574 (15)
Cl10.0304 (6)0.0638 (8)0.0307 (6)0.0060 (6)0.0030 (5)0.0020 (5)
Cl20.0510 (7)0.0538 (7)0.0555 (7)0.0164 (6)0.0221 (6)0.0391 (6)
O10.0207 (13)0.0147 (12)0.0147 (12)0.0039 (10)0.0037 (10)0.0058 (9)
C110.0143 (17)0.0165 (16)0.0146 (16)0.0039 (13)0.0026 (13)0.0058 (13)
C120.0185 (18)0.0235 (18)0.0146 (16)0.0067 (15)0.0077 (14)0.0089 (14)
C130.0158 (17)0.0209 (18)0.0232 (18)0.0033 (14)0.0070 (14)0.0111 (15)
C140.0187 (18)0.0153 (17)0.0240 (18)0.0022 (14)−0.0007 (15)0.0085 (14)
C150.0235 (19)0.0221 (18)0.0168 (17)0.0052 (15)0.0025 (15)0.0090 (15)
C160.0161 (17)0.0196 (17)0.0170 (17)0.0037 (14)0.0051 (14)0.0090 (14)
C170.018 (2)0.036 (2)0.033 (2)0.0020 (17)−0.0019 (17)0.0200 (18)
C210.0119 (16)0.0227 (18)0.0175 (17)0.0044 (14)0.0029 (13)0.0112 (14)
C220.026 (2)0.0223 (18)0.0194 (18)0.0079 (16)0.0033 (15)0.0092 (15)
C230.027 (2)0.025 (2)0.031 (2)0.0073 (16)0.0075 (17)0.0185 (17)
C240.0197 (19)0.036 (2)0.0212 (18)0.0120 (17)0.0053 (15)0.0158 (17)
C250.023 (2)0.030 (2)0.0165 (17)0.0112 (16)0.0039 (15)0.0070 (15)
C260.0202 (19)0.0221 (18)0.0193 (18)0.0043 (15)0.0043 (14)0.0091 (15)
C270.035 (2)0.052 (3)0.028 (2)0.018 (2)0.0097 (18)0.025 (2)
C310.0153 (17)0.0155 (16)0.0166 (17)0.0063 (14)0.0034 (13)0.0053 (13)
C320.0214 (19)0.0222 (18)0.0169 (17)0.0076 (15)0.0050 (14)0.0079 (14)
C330.0175 (18)0.0218 (18)0.0262 (19)0.0053 (15)0.0059 (15)0.0127 (15)
C340.0183 (18)0.0168 (17)0.0217 (18)0.0039 (14)−0.0023 (14)0.0073 (14)
C350.0220 (19)0.0275 (19)0.0163 (17)0.0077 (16)0.0022 (14)0.0109 (15)
C360.0194 (19)0.0264 (19)0.0185 (18)0.0058 (15)0.0054 (15)0.0111 (15)
C370.021 (2)0.035 (2)0.028 (2)0.0066 (17)−0.0039 (16)0.0133 (18)
C410.0137 (17)0.0174 (17)0.0168 (17)0.0045 (14)0.0044 (13)0.0053 (14)
C420.0178 (18)0.0204 (17)0.0186 (17)0.0042 (14)0.0004 (14)0.0107 (14)
C430.0148 (17)0.0275 (19)0.0150 (17)0.0065 (15)0.0020 (14)0.0052 (14)
C440.0112 (17)0.0187 (18)0.029 (2)0.0027 (14)0.0038 (15)0.0036 (15)
C450.024 (2)0.0192 (18)0.028 (2)0.0064 (15)0.0054 (16)0.0123 (16)
C460.0174 (18)0.0219 (18)0.0175 (17)0.0054 (15)0.0012 (14)0.0085 (14)
C470.025 (2)0.022 (2)0.035 (2)0.0076 (17)0.0021 (17)0.0014 (17)
C510.034 (2)0.022 (2)0.029 (2)0.0070 (17)0.0054 (18)0.0082 (16)

Geometric parameters (Å, °)

Ge1—O11.790 (2)C26—H26A0.950
Ge1—C211.945 (3)C27—H27A0.979
Ge1—C111.953 (3)C27—H27B0.980
Ge1—Ge22.4418 (5)C27—H27C0.979
Ge2—O1i1.785 (2)C32—H32A0.951
Ge2—C411.944 (3)C33—H33A0.950
Ge2—C311.943 (3)C35—H35A0.949
Cl1—C511.756 (4)C36—H36A0.950
Cl2—C511.758 (4)C37—H37A0.979
O1—Ge2i1.785 (2)C37—H37B0.980
C11—C121.386 (5)C37—H37C0.980
C11—C161.410 (5)C42—H42A0.950
C12—C131.389 (5)C43—H43A0.950
C13—C141.389 (5)C45—H45A0.950
C14—C151.387 (5)C46—H46A0.950
C14—C171.510 (5)C47—H47A0.979
C15—C161.388 (5)C47—H47B0.981
C21—C261.393 (5)C47—H47C0.981
C21—C221.394 (5)C12—H12A0.951
C22—C231.394 (5)C13—H13A0.951
C23—C241.395 (6)C15—H15A0.950
C24—C251.390 (5)C16—H16A0.950
C24—C271.505 (5)C17—H17A0.980
C25—C261.376 (5)C17—H17B0.980
C31—C321.391 (5)C17—H17C0.980
C31—C361.410 (5)C22—H22A0.951
C32—C331.375 (5)C23—H23A0.950
C33—C341.390 (5)C25—H25A0.950
C34—C351.395 (5)C26—H26A0.950
C34—C371.500 (5)C27—H27A0.979
C35—C361.388 (5)C27—H27B0.980
C41—C421.391 (5)C27—H27C0.979
C41—C461.402 (5)C32—H32A0.951
C42—C431.394 (5)C33—H33A0.950
C43—C441.391 (5)C35—H35A0.949
C44—C451.395 (5)C36—H36A0.950
C44—C471.505 (5)C37—H37A0.979
C45—C461.386 (5)C37—H37B0.980
C12—H12A0.951C37—H37C0.980
C13—H13A0.951C42—H42A0.950
C15—H15A0.950C43—H43A0.950
C16—H16A0.950C45—H45A0.950
C17—H17A0.980C46—H46A0.950
C17—H17B0.980C47—H47A0.979
C17—H17C0.980C47—H47B0.981
C22—H22A0.951C47—H47C0.981
C23—H23A0.950C51—H51A0.990
C25—H25A0.950C51—H51B0.989
O1—Ge1—C21102.6 (1)H33A—C33—C34119.3
O1—Ge1—C11109.6 (1)C34—C35—H35A119.2
C21—Ge1—C11109.1 (1)H35A—C35—C36119.2
O1—Ge1—Ge2104.82 (8)C31—C36—H36A120.2
C21—Ge1—Ge2116.8 (1)C35—C36—H36A120.1
C11—Ge1—Ge2113.1 (1)C34—C37—H37A109.5
O1i—Ge2—C41102.3 (1)C34—C37—H37B109.5
O1i—Ge2—C31108.8 (1)C34—C37—H37C109.5
C41—Ge2—C31110.5 (1)H37A—C37—H37B109.5
O1i—Ge2—Ge1106.20 (8)H37A—C37—H37C109.5
C41—Ge2—Ge1114.5 (1)H37B—C37—H37C109.4
C31—Ge2—Ge1113.7 (1)C41—C42—H42A119.7
Ge2i—O1—Ge1126.7 (1)H42A—C42—C43119.8
C12—C11—C16118.6 (3)C42—C43—H43A119.5
C12—C11—Ge1120.3 (2)H43A—C43—C44119.6
C16—C11—Ge1121.0 (3)C44—C45—H45A119.4
C13—C12—C11120.7 (3)H45A—C45—C46119.4
C12—C13—C14121.1 (3)C41—C46—H46A119.8
C13—C14—C15118.1 (3)C45—C46—H46A119.8
C13—C14—C17120.6 (3)C44—C47—H47A109.5
C15—C14—C17121.2 (3)C44—C47—H47B109.4
C16—C15—C14121.7 (3)C44—C47—H47C109.5
C15—C16—C11119.6 (3)H47A—C47—H47B109.5
C26—C21—C22118.2 (3)H47A—C47—H47C109.5
C26—C21—Ge1120.6 (3)H47B—C47—H47C109.4
C22—C21—Ge1121.2 (3)C11—C12—H12A119.6
C21—C22—C23120.5 (3)H12A—C12—C13119.7
C22—C23—C24120.9 (4)C12—C13—H13A119.4
C25—C24—C23117.8 (3)H13A—C13—C14119.5
C25—C24—C27121.0 (4)C14—C15—H15A119.1
C23—C24—C27121.2 (4)H15A—C15—C16119.2
C26—C25—C24121.5 (3)C11—C16—H16A120.1
C25—C26—C21121.0 (3)C15—C16—H16A120.2
C32—C31—C36118.4 (3)C14—C17—H17A109.4
C32—C31—Ge2119.4 (2)C14—C17—H17B109.5
C36—C31—Ge2122.2 (3)C14—C17—H17C109.5
C33—C32—C31121.1 (3)H17A—C17—H17B109.5
C32—C33—C34121.3 (3)H17A—C17—H17C109.4
C33—C34—C35117.9 (3)H17B—C17—H17C109.5
C33—C34—C37120.8 (3)C21—C22—H22A119.7
C35—C34—C37121.3 (3)H22A—C22—C23119.8
C36—C35—C34121.6 (3)C22—C23—H23A119.5
C35—C36—C31119.7 (3)H23A—C23—C24119.5
C42—C41—C46118.6 (3)C24—C25—H25A119.3
C42—C41—Ge2120.6 (3)H25A—C25—C26119.2
C46—C41—Ge2120.8 (2)C21—C26—H26A119.4
C41—C42—C43120.6 (3)C25—C26—H26A119.6
C44—C43—C42120.9 (3)C24—C27—H27A109.4
C43—C44—C45118.3 (3)C24—C27—H27B109.4
C43—C44—C47120.9 (3)C24—C27—H27C109.5
C45—C44—C47120.7 (3)H27A—C27—H27B109.5
C46—C45—C44121.1 (3)H27A—C27—H27C109.5
C45—C46—C41120.5 (3)H27B—C27—H27C109.5
Cl2—C51—Cl1111.2 (2)C31—C32—H32A119.4
C11—C12—H12A119.6H32A—C32—C33119.5
H12A—C12—C13119.7C32—C33—H33A119.3
C12—C13—H13A119.4H33A—C33—C34119.3
H13A—C13—C14119.5C34—C35—H35A119.2
C14—C15—H15A119.1H35A—C35—C36119.2
C14—C15—C16121.7C31—C36—H36A120.2
H15A—C15—C16119.2C35—C36—H36A120.1
C11—C16—H16A120.1C34—C37—H37A109.5
C15—C16—H16A120.2C34—C37—H37B109.5
C14—C17—H17A109.4C34—C37—H37C109.5
C14—C17—H17B109.5H37A—C37—H37B109.5
C14—C17—H17C109.5H37A—C37—H37C109.5
H17A—C17—H17B109.5H37B—C37—H37C109.4
H17A—C17—H17C109.4C41—C42—H42A119.7
H17B—C17—H17C109.5H42A—C42—C43119.8
C21—C22—H22A119.7C42—C43—H43A119.5
H22A—C22—C23119.8H43A—C43—C44119.6
C22—C23—H23A119.5C44—C45—H45A119.4
H23A—C23—C24119.5H45A—C45—C46119.4
C24—C25—H25A119.3C41—C46—H46A119.8
H25A—C25—C26119.2C45—C46—H46A119.8
C21—C26—H26A119.4C44—C47—H47A109.5
C25—C26—H26A119.6C44—C47—H47B109.4
C24—C27—H27A109.4C44—C47—H47C109.5
C24—C27—H27B109.4H47A—C47—H47B109.5
C24—C27—H27C109.5H47A—C47—H47C109.5
H27A—C27—H27B109.5H47B—C47—H47C109.4
H27A—C27—H27C109.5Cl1—C51—H51A109.4
H27B—C27—H27C109.5Cl1—C51—H51B109.5
C31—C32—H32A119.4Cl2—C51—H51A109.4
H32A—C32—C33119.5Cl2—C51—H51B109.4
C32—C33—H33A119.3H51A—C51—H51B108.0

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2875).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dräger, M. & Häberle, K. (1985). J. Organomet. Chem.280, 183–196.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography