PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 September 1; 65(Pt 9): o2137.
Published online 2009 August 12. doi:  10.1107/S1600536809031122
PMCID: PMC2970097

3-(4-Chloro­phen­yl)-1-(4-nitro­phen­yl)benzo[f]quinoline

Abstract

In the title compound, C25H15ClN2O2, the pyridine ring is inclined at angles of 6.89 (7), 4.24 (9) and 66.98 (4)° with respect to the naphthalene, chloro­phenyl and nitro­phenyl rings, respectively. The two substituent aromatic rings make a dihedral angle of 71.1 (1)° with one another. C—H(...)π and π–π stacking are present in the crystal structure; the π–π stacking [centroid–centroid distance between the pyridyl rings of adjacent mol­ecules= 3.7838 (11) Å] links the mol­ecules into dimers, while the C—H(...)Cg type π–ring inter­actons link the mol­ecules into a chain structure along c.

Related literature

Quinoline and its derivatives are inter­mediates in organic synthesis and are useful dyes, see: Brock et al. (1999 [triangle]). They possess a broad spectrum of biological activity, such as anti­asthmatic, anti­inflammatory and anti­malarial, see: Fokialakis et al. (2002 [triangle]); Ma et al. (2004 [triangle]); Sawada et al. (2004 [triangle]). In addition, quinoline derivatives have been evaluated as anti­cancer and anthelmintic agents, see: Sakata et al. (1988 [triangle]). For related structures, see: Tu et al. (2006 [triangle]); Xie et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2137-scheme1.jpg

Experimental

Crystal data

  • C25H15ClN2O2
  • M r = 410.84
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2137-efi1.jpg
  • a = 9.1390 (12) Å
  • b = 9.5350 (11) Å
  • c = 11.9668 (17) Å
  • α = 108.182 (4)°
  • β = 105.366 (4)°
  • γ = 92.739 (3)°
  • V = 945.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 113 K
  • 0.34 × 0.32 × 0.22 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 1999 [triangle]) T min = 0.926, T max = 0.952
  • 11798 measured reflections
  • 4467 independent reflections
  • 3779 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.129
  • S = 1.06
  • 4467 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 1999 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: CrystalStructure/MSC (Rigaku/MSC (2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031122/pv2192sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031122/pv2192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of Jiangsu Education Committee for financial support.

supplementary crystallographic information

Comment

Quinoline and its derivatives represent an important class of nitrogen-containing heterocycles as they constitute useful intermediates in organic synthesis and are useful dyes (Brock et al., 1999). They are well known in the pharmaceutical industry and have been shown to possess a broad spectrum of biological activities including such as antiasthmatic, antiinflammatory and antimalarial activity (Sawada, et al., 2004; Ma et al., 2004; Fokialakis et al., 2002). In addition, quinoline derivatives have been evaluated as anticancer and anthelmintic agents (Sakata et al., 1988). We report here the preparation and crystal structure of 3-(4-chlorophenyl)-1-(4-nitrophenyl)benzo[f]quinoline, (I).

In the structure of (I) (Fig. 1), the benzoquinoline moiety is not quite planar as C3 deviates by 0.169 (1) Å from the mean-plane formed by the atoms N1/C1–C13. The pyridine ring is inclined at angles 6.89 (7), 4.24 (9) and 66.98 (4) ° with respect to the naphthalene (C4–C13), and phenyl rings C14–C19 and C20–C25, respectively. The two phenyl rings make a dihedral angle of 71.1 (1) °.

The C—H···π and π–π stacking are present in the crystal structure of (I). The π–π stacking (Cg···Cg distance 3.7838 (11) Å between the pyridyl rings of adjacent molecules) links the molecules into dimmers, while the C24—H24A···Cg stacking links the molecules into polymers (Figure 2).

The following crystal structures of compounds closely related to (I) have been reported: 13-(4-fluorophenyl)-12H-benzo[f]indeno[1,2-b]quinolin-12-one (Tu et al., 2006) and 5-(4-bromophenyl)-1,2,3,4-tetrahydrobenzo[a]phenanthridine (Xie et al., 2009).

Experimental

The title compound, (I), was prepared by the reaction of 4-chlorobenzaldehyde (2 mmol, 0.281 g), naphthalen-2-amine (2 mmol, 0.283 g) and 2-bromoacetophenone (2 mmol, 0.498 g) in THF (10 ml) at 338 K catalyzed by iodine. m.p. 559–561 K. The single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of (I).

Refinement

H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) plotted with 50% probability of displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The molecular packing diagram showing the C—H···π and π–π stacking in the crystal of (I).

Crystal data

C25H15ClN2O2Z = 2
Mr = 410.84F(000) = 424
Triclinic, P1Dx = 1.443 Mg m3
Hall symbol: -P 1Melting point = 559–561 K
a = 9.1390 (12) ÅMo Kα radiation, λ = 0.71070 Å
b = 9.5350 (11) ÅCell parameters from 3276 reflections
c = 11.9668 (17) Åθ = 1.9–27.9°
α = 108.182 (4)°µ = 0.23 mm1
β = 105.366 (4)°T = 113 K
γ = 92.739 (3)°Block, yellow
V = 945.6 (2) Å30.34 × 0.32 × 0.22 mm

Data collection

Rigaku Saturn diffractometer4467 independent reflections
Radiation source: rotating anode3779 reflections with I > 2σ(I)
confocalRint = 0.034
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω scansh = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku, 1999)k = −12→12
Tmin = 0.926, Tmax = 0.952l = −15→15
11798 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0619P)2 + 0.2446P] where P = (Fo2 + 2Fc2)/3
4467 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.44740 (5)1.45046 (5)0.65255 (4)0.03265 (15)
O10.11873 (18)0.19922 (14)0.55020 (13)0.0390 (4)
O20.20781 (16)0.29045 (15)0.43402 (12)0.0373 (3)
N10.09795 (15)1.16854 (15)0.97919 (12)0.0190 (3)
N20.16218 (16)0.30287 (16)0.52288 (13)0.0237 (3)
C10.03104 (17)1.11236 (17)0.85802 (15)0.0180 (3)
C20.05962 (18)0.97511 (17)0.78672 (15)0.0197 (3)
H20.00850.93700.70080.024*
C30.16056 (18)0.89462 (17)0.83916 (14)0.0178 (3)
C40.24330 (17)0.95634 (17)0.96652 (15)0.0181 (3)
C50.20143 (17)1.09302 (17)1.03223 (15)0.0184 (3)
C60.26619 (18)1.15733 (18)1.16297 (15)0.0212 (3)
H60.23611.24751.20620.025*
C70.36952 (19)1.09148 (19)1.22567 (15)0.0228 (4)
H70.40741.13371.31280.027*
C80.42320 (18)0.95928 (18)1.16351 (15)0.0208 (3)
C90.36459 (18)0.89220 (17)1.03335 (15)0.0193 (3)
C100.43260 (18)0.77063 (18)0.97623 (16)0.0221 (4)
H100.40000.72730.88900.027*
C110.54513 (19)0.71333 (19)1.04391 (17)0.0253 (4)
H110.58790.63081.00290.030*
C120.59711 (19)0.7757 (2)1.17264 (17)0.0265 (4)
H120.67250.73421.21920.032*
C130.53780 (19)0.89731 (19)1.23024 (16)0.0244 (4)
H130.57460.94111.31730.029*
C14−0.08359 (18)1.19683 (17)0.80328 (15)0.0187 (3)
C15−0.17082 (19)1.14279 (18)0.67950 (15)0.0224 (4)
H15−0.15431.05140.62650.027*
C16−0.28137 (19)1.22157 (19)0.63335 (16)0.0237 (4)
H16−0.34071.18400.54920.028*
C17−0.30481 (18)1.35505 (19)0.71036 (16)0.0222 (4)
C18−0.21770 (19)1.41347 (19)0.83272 (16)0.0236 (4)
H18−0.23231.50670.88450.028*
C19−0.10882 (19)1.33288 (18)0.87788 (15)0.0209 (3)
H19−0.04971.37130.96200.025*
C200.16339 (17)0.74070 (17)0.75715 (15)0.0184 (3)
C210.21663 (19)0.71865 (18)0.65500 (15)0.0216 (3)
H210.25400.80230.63830.026*
C220.21556 (18)0.57585 (18)0.57745 (15)0.0214 (3)
H220.25280.56040.50820.026*
C230.15882 (18)0.45621 (17)0.60359 (14)0.0193 (3)
C240.09988 (19)0.47391 (18)0.70168 (15)0.0221 (4)
H240.05900.38990.71610.027*
C250.10213 (19)0.61767 (18)0.77824 (15)0.0215 (3)
H250.06160.63260.84580.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0261 (2)0.0316 (3)0.0412 (3)0.01053 (18)0.0055 (2)0.0162 (2)
O10.0580 (9)0.0188 (6)0.0367 (8)0.0056 (6)0.0139 (7)0.0046 (6)
O20.0424 (8)0.0319 (7)0.0299 (7)0.0032 (6)0.0144 (6)−0.0031 (6)
N10.0188 (7)0.0175 (6)0.0199 (7)0.0015 (5)0.0058 (6)0.0054 (5)
N20.0208 (7)0.0257 (7)0.0182 (7)0.0025 (6)0.0012 (6)0.0022 (6)
C10.0174 (7)0.0159 (7)0.0211 (8)0.0008 (6)0.0073 (6)0.0057 (6)
C20.0201 (8)0.0176 (7)0.0193 (8)0.0014 (6)0.0053 (6)0.0041 (6)
C30.0188 (7)0.0149 (7)0.0202 (8)0.0015 (6)0.0085 (6)0.0042 (6)
C40.0175 (8)0.0159 (7)0.0216 (8)0.0009 (6)0.0073 (6)0.0060 (6)
C50.0176 (7)0.0166 (7)0.0211 (8)0.0013 (6)0.0067 (6)0.0056 (6)
C60.0229 (8)0.0178 (7)0.0206 (8)0.0006 (6)0.0070 (7)0.0031 (6)
C70.0243 (8)0.0227 (8)0.0188 (8)0.0001 (7)0.0048 (7)0.0053 (7)
C80.0192 (8)0.0196 (8)0.0249 (9)−0.0003 (6)0.0066 (7)0.0094 (7)
C90.0176 (7)0.0181 (7)0.0235 (8)0.0005 (6)0.0075 (6)0.0080 (7)
C100.0194 (8)0.0216 (8)0.0266 (9)0.0029 (6)0.0084 (7)0.0082 (7)
C110.0209 (8)0.0228 (8)0.0354 (10)0.0054 (7)0.0107 (7)0.0118 (8)
C120.0224 (8)0.0281 (9)0.0340 (10)0.0061 (7)0.0069 (8)0.0182 (8)
C130.0235 (8)0.0262 (9)0.0232 (9)0.0004 (7)0.0033 (7)0.0114 (7)
C140.0189 (8)0.0169 (7)0.0211 (8)0.0016 (6)0.0067 (6)0.0072 (6)
C150.0251 (8)0.0173 (8)0.0231 (9)0.0036 (6)0.0065 (7)0.0049 (7)
C160.0242 (8)0.0232 (8)0.0209 (9)0.0017 (7)0.0027 (7)0.0072 (7)
C170.0182 (8)0.0223 (8)0.0289 (9)0.0042 (6)0.0074 (7)0.0120 (7)
C180.0260 (9)0.0197 (8)0.0260 (9)0.0055 (7)0.0103 (7)0.0062 (7)
C190.0227 (8)0.0199 (8)0.0188 (8)0.0032 (6)0.0061 (7)0.0049 (7)
C200.0167 (7)0.0165 (7)0.0193 (8)0.0041 (6)0.0035 (6)0.0037 (6)
C210.0239 (8)0.0188 (8)0.0221 (8)0.0034 (6)0.0067 (7)0.0069 (7)
C220.0220 (8)0.0243 (8)0.0175 (8)0.0057 (6)0.0060 (7)0.0058 (7)
C230.0183 (8)0.0166 (7)0.0175 (8)0.0048 (6)0.0019 (6)0.0010 (6)
C240.0230 (8)0.0175 (8)0.0247 (9)0.0024 (6)0.0061 (7)0.0064 (7)
C250.0240 (8)0.0194 (8)0.0216 (8)0.0032 (6)0.0097 (7)0.0054 (7)

Geometric parameters (Å, °)

Cl1—C171.7414 (17)C11—H110.9500
O1—N21.2142 (19)C12—C131.368 (2)
O2—N21.2165 (19)C12—H120.9500
N1—C11.333 (2)C13—H130.9500
N1—C51.359 (2)C14—C191.396 (2)
N2—C231.487 (2)C14—C151.398 (2)
C1—C21.401 (2)C15—C161.388 (2)
C1—C141.490 (2)C15—H150.9500
C2—C31.377 (2)C16—C171.383 (2)
C2—H20.9500C16—H160.9500
C3—C41.424 (2)C17—C181.385 (2)
C3—C201.495 (2)C18—C191.386 (2)
C4—C51.425 (2)C18—H180.9500
C4—C91.464 (2)C19—H190.9500
C5—C61.432 (2)C20—C211.393 (2)
C6—C71.351 (2)C20—C251.396 (2)
C6—H60.9500C21—C221.386 (2)
C7—C81.432 (2)C21—H210.9500
C7—H70.9500C22—C231.386 (2)
C8—C131.412 (2)C22—H220.9500
C8—C91.423 (2)C23—C241.384 (2)
C9—C101.413 (2)C24—C251.386 (2)
C10—C111.379 (2)C24—H240.9500
C10—H100.9500C25—H250.9500
C11—C121.402 (3)
C1—N1—C5118.45 (14)C12—C13—C8121.65 (16)
O1—N2—O2124.78 (15)C12—C13—H13119.2
O1—N2—C23117.66 (14)C8—C13—H13119.2
O2—N2—C23117.56 (14)C19—C14—C15118.20 (15)
N1—C1—C2121.44 (14)C19—C14—C1119.49 (14)
N1—C1—C14117.00 (14)C15—C14—C1122.29 (14)
C2—C1—C14121.43 (14)C16—C15—C14120.53 (15)
C3—C2—C1121.03 (15)C16—C15—H15119.7
C3—C2—H2119.5C14—C15—H15119.7
C1—C2—H2119.5C17—C16—C15119.71 (15)
C2—C3—C4119.17 (14)C17—C16—H16120.1
C2—C3—C20115.55 (14)C15—C16—H16120.1
C4—C3—C20125.06 (14)C16—C17—C18121.18 (15)
C3—C4—C5115.47 (14)C16—C17—Cl1119.34 (13)
C3—C4—C9125.96 (14)C18—C17—Cl1119.48 (13)
C5—C4—C9118.57 (14)C17—C18—C19118.48 (15)
N1—C5—C4124.14 (15)C17—C18—H18120.8
N1—C5—C6115.65 (14)C19—C18—H18120.8
C4—C5—C6120.19 (14)C18—C19—C14121.87 (15)
C7—C6—C5120.86 (15)C18—C19—H19119.1
C7—C6—H6119.6C14—C19—H19119.1
C5—C6—H6119.6C21—C20—C25119.49 (15)
C6—C7—C8121.35 (15)C21—C20—C3120.79 (14)
C6—C7—H7119.3C25—C20—C3119.58 (14)
C8—C7—H7119.3C22—C21—C20120.64 (15)
C13—C8—C9119.58 (15)C22—C21—H21119.7
C13—C8—C7120.33 (15)C20—C21—H21119.7
C9—C8—C7120.06 (15)C23—C22—C21118.27 (15)
C10—C9—C8117.29 (15)C23—C22—H22120.9
C10—C9—C4124.07 (15)C21—C22—H22120.9
C8—C9—C4118.58 (14)C24—C23—C22122.69 (15)
C11—C10—C9121.62 (16)C24—C23—N2118.94 (15)
C11—C10—H10119.2C22—C23—N2118.37 (14)
C9—C10—H10119.2C23—C24—C25118.12 (15)
C10—C11—C12120.63 (16)C23—C24—H24120.9
C10—C11—H11119.7C25—C24—H24120.9
C12—C11—H11119.7C24—C25—C20120.71 (15)
C13—C12—C11119.08 (15)C24—C25—H25119.6
C13—C12—H12120.5C20—C25—H25119.6
C11—C12—H12120.5
C5—N1—C1—C23.2 (2)C9—C8—C13—C121.5 (2)
C5—N1—C1—C14179.07 (13)C7—C8—C13—C12−176.50 (15)
N1—C1—C2—C3−1.3 (2)N1—C1—C14—C193.9 (2)
C14—C1—C2—C3−177.01 (14)C2—C1—C14—C19179.74 (15)
C1—C2—C3—C4−3.6 (2)N1—C1—C14—C15−174.37 (15)
C1—C2—C3—C20171.36 (14)C2—C1—C14—C151.5 (2)
C2—C3—C4—C56.1 (2)C19—C14—C15—C16−1.2 (2)
C20—C3—C4—C5−168.31 (14)C1—C14—C15—C16177.03 (15)
C2—C3—C4—C9−173.89 (14)C14—C15—C16—C170.3 (3)
C20—C3—C4—C911.7 (3)C15—C16—C17—C181.3 (3)
C1—N1—C5—C4−0.2 (2)C15—C16—C17—Cl1−178.25 (13)
C1—N1—C5—C6−178.50 (14)C16—C17—C18—C19−1.9 (3)
C3—C4—C5—N1−4.4 (2)Cl1—C17—C18—C19177.61 (12)
C9—C4—C5—N1175.56 (14)C17—C18—C19—C141.0 (3)
C3—C4—C5—C6173.80 (14)C15—C14—C19—C180.6 (2)
C9—C4—C5—C6−6.2 (2)C1—C14—C19—C18−177.75 (15)
N1—C5—C6—C7179.58 (15)C2—C3—C20—C2166.7 (2)
C4—C5—C6—C71.2 (2)C4—C3—C20—C21−118.66 (18)
C5—C6—C7—C82.9 (3)C2—C3—C20—C25−108.78 (17)
C6—C7—C8—C13176.32 (15)C4—C3—C20—C2565.8 (2)
C6—C7—C8—C9−1.7 (2)C25—C20—C21—C22−2.9 (2)
C13—C8—C9—C10−4.0 (2)C3—C20—C21—C22−178.39 (15)
C7—C8—C9—C10174.05 (14)C20—C21—C22—C230.7 (2)
C13—C8—C9—C4178.58 (14)C21—C22—C23—C241.7 (2)
C7—C8—C9—C4−3.4 (2)C21—C22—C23—N2−178.06 (14)
C3—C4—C9—C1010.0 (3)O1—N2—C23—C24−3.1 (2)
C5—C4—C9—C10−170.04 (15)O2—N2—C23—C24176.60 (14)
C3—C4—C9—C8−172.80 (14)O1—N2—C23—C22176.65 (15)
C5—C4—C9—C87.2 (2)O2—N2—C23—C22−3.6 (2)
C8—C9—C10—C113.6 (2)C22—C23—C24—C25−1.8 (2)
C4—C9—C10—C11−179.09 (15)N2—C23—C24—C25177.99 (14)
C9—C10—C11—C12−0.7 (3)C23—C24—C25—C20−0.5 (2)
C10—C11—C12—C13−1.9 (3)C21—C20—C25—C242.8 (2)
C11—C12—C13—C81.5 (3)C3—C20—C25—C24178.38 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C24—H24···Cgi0.952.723.510 (12)142

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2192).

References

  • Brock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). World Patent WO 9951688.
  • Fokialakis, N., Magiatis, P., Chinou, L., Mitaku, S. & Tillequin, F. (2002). Chem. Pharm. Bull 50, 413–414. [PubMed]
  • Ma, Z., Hano, Y., Nomura, T. & Chen, Y. (2004). Bioorg. Med. Chem. Lett 14, 1193–1196. [PubMed]
  • Rigaku (1999). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2003). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sakata, G., Makino, K. & Karasawa, Y. (1988). Heterocycles, 27, 2481–2515.
  • Sawada, Y., Kayakiri, H., Abe, Y., Mizutani, T., Inamura, N., Asano, M., Hatori, C., Aramori, I., Oku, T. & Tanaka, H. (2004). J. Med. Chem 47, 2853–2863. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tu, S.-J., Zhang, Y. & Jia, R.-H. (2006). Acta Cryst. E62, o3930–o3931.
  • Xie, H.-S., Zhang, A.-L. & Su, L. (2009). Acta Cryst. E65, o1074. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography